Inclusive jet measurements in pp and Pb-Pb collisions with ALICE

James Mulligan (Yale University), on behalf of the ALICE Collaboration

Oct 3 2018
Aix-Les-Bains, France
Jet yields are suppressed in heavy-ion collisions

\[R_{AA} = \frac{\frac{1}{\langle T_{AA} \rangle} \frac{1}{N_{\text{event}}} \frac{d^2 N}{dp_T d\eta}}{\frac{d^2 \sigma}{dp_T d\eta}} \bigg|_{\text{pp}} \]

Inclusive jet measurements show that jets in central Pb-Pb collisions lose on average ~10-20% of their energy, depending on \(p_{T,\text{jet}} \).

The energy loss fraction gradually decreases as \(p_{T,\text{jet}} \) increases.

ALICE Pb-Pb \(\sqrt{s_{NN}} = 2.76 \text{ TeV} \)

Anti-\(k_T \) \(R = 0.2 \) \(|\eta_{\text{jet}}| < 0.5 \)

\(p_{T,\text{ch}}^{\text{lead}} > 5 \text{ GeV/c} \)

- ALICE 0 - 10%
- PLB 746 (2015) 1
- CMS 0 - 10%
- PRC 96 (2017) 015202
- ATLAS 0 - 10%
- PRL 114 (2015) 072302

ATLAS scaled from \(R = 0.4 \) to \(R = 0.2 \) using \(R_{CP} \) ratios in PLB 719 (2013) 220
How well do we understand jet R_{AA}?

Can we distinguish jet energy loss models using jet R_{AA}?

• All models have strong quenching, decreasing with p_T
• There are slight differences in the absolute level of quenching, and the p_T-dependence of quenching

What about at low p_T? → Strongest p_T-dependence

ATLAS jet R_{AA} measurement at 5.02 TeV from $p_T = 100$-1000 GeV

High precision!

arxiv 1805.05424
How well do we understand jet R_{AA}?

Can we distinguish the R-dependence of jet energy loss?

- Do we recover induced gluon radiation and/or medium recoil? (Less suppression as R increases)
- Or do smaller R jets tend to be more collimated, and therefore less quenched? (More suppression as R increases)

Can we achieve sufficient experimental precision to distinguish whether jet R_{AA} increases or decreases with jet R?
Do measurements show an R-dependence?

- **ALICE charged jets**
 - No modification in ratio $R=0.2/R=0.3$
 - CMS jet R_{AA}
 - No significant modification $R=0.2-0.4$
 - ATLAS R_{CP}
 - Significant modification for $R=0.2-0.5$
 - Jet shapes (ALICE, CMS)
 - show modification, hadron-jet coincidence measurement (ALICE) shows no significant intra-jet broadening from $R=0.2-0.5$, ...

\[\sigma(R=0.2)/\sigma(R=0.3) \]

\[\begin{align*}
\text{ALICE} \\
\text{Pb-Pb} & \quad s_{NN}=2.76 \text{ TeV} \\
\text{Anti-}k_T & \\
\rho_{\text{track}} & > 0.15 \text{ GeV/c} \\
\text{Leading track} & \quad \rho_T > 5 \text{ GeV/c}
\end{align*} \]
Do measurements show an R-dependence?

- **ALICE charged jets**
 - No significant modification $R=0.2/0.3$

- **CMS jet R_{AA}**
 - No significant modification $R=0.2-0.4$

- **ATLAS R_{CP}**
 - Significant modification for $R=0.2-0.5$

- Jet shapes (ALICE, CMS) show modification, hadron-jet coincidence measurement (ALICE) shows no significant intra-jet broadening from $R=0.2-0.5$, …
Do measurements show an R-dependence?

- **ALICE charged jets**
 - No significant modification $R=0.2/R=0.3$
- **CMS jet R_{AA}**
 - No significant modification $R=0.2-0.4$
- **ATLAS R_{CP}**
 - Significant modification for $R=0.2-0.5$
- Jet shapes (ALICE, CMS) show modification, hadron-jet coincidence measurement (ALICE) shows no significant intra-jet broadening from $R=0.2-0.5$, …
Do measurements show an R-dependence?

- ALICE charged jets
 - No significant modification $R=0.2/R=0.3$
- CMS jet R_{AA}
 - No significant modification $R=0.2-0.4$
- ATLAS R_{CP}
 - Significant modification for $R=0.2-0.5$
- Jet shapes (ALICE, CMS) show modification, hadron-jet coincidence measurement (ALICE) shows no significant intra-jet broadening from $R=0.2-0.5$, ...

Measurements do not provide a clear picture
Measuring jets in ALICE

ALICE reconstructs jets at mid-rapidity ($\eta < 0.7$) in pp, p-Pb, Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76 - 13$ TeV.

Charged particle jets (charged jets)
- High-precision tracking down to $p_{T,\text{track}} = 150$ MeV/c

Jets (full jets)
- Addition of particle information from the EM calorimeter down to $p_{T,\text{cluster}} = 300$ MeV/c

EMCal φ acceptance: 108°
Measuring jets in ALICE

Most ALICE jet measurements use charged particle jets

Today, I will focus on full jets (charged + neutral)

- Full jets allow a direct comparison to theory
- But significant experimental complication!
 - And reduced statistics due to limited coverage
Measuring jets in ALICE

Most ALICE jet measurements use charged particle jets

Today, I will focus on full jets (charged + neutral)

- Full jets allow a direct comparison to theory
- But significant experimental complication!
 - And reduced statistics due to limited coverage

Inclusive jet measurement in pp, Pb-Pb at $\sqrt{s_{NN}} = 5.02$ TeV

1. Measure jet R_{AA} for $R=0.2-0.4$
2. Measure Pb-Pb jet cross-section ratio
Analysis strategy

• **Three main pieces to the analysis:**
 - Measure the jet p_T — combine track p_T and EMCal p_T
 - Subtract the combinatorial background event-by-event
 - Correct the jet p_T for detector and resolution effects

• **Improvements relative to the 2.76 TeV ALICE analysis**
 - Extend to $R=0.4$
 - Allows examination of modification to jet shape
 - Refine analysis technique
 - Better understanding of our tracking and calorimetry
 - Utilization of embedding-based jet p_T correction
Results — pp jet cross-section

We measure the inclusive pp jet cross-section for $p_{T,jet} = 20-140$ GeV/c at 5.02 TeV as a reference for jet R_{AA}.
The measurement is consistent with POWHEG + Pythia8
Results — Pb-Pb jet spectra

We measure the Pb-Pb jet spectrum in 0-10% centrality for $p_{T,\text{jet}} = 40$-140 GeV/c.
Results — Jet R_{AA}

The first full jet R_{AA} measurement at $p_{T,\text{jet}} < 100$ GeV/c at 5.02 TeV

Similar suppression observed in $R=0.2$ and $R=0.4$
Results — Jet R_{AA}

ALICE $R=0.4$ jet R_{AA} is consistent with ATLAS $R=0.4$ jet R_{AA}

ALICE Preliminary
Pb-Pb 0-10% $\sqrt{s_{NN}} = 5.02$ TeV
pp $\sqrt{s_{NN}} = 5.02$ TeV
Anti-k_T $R = 0.4 \ \ |\eta_{jet}| < 0.3$
$p_T^{lead,ch} > 7$ GeV/c

arxiv 1805.05424
Charged particle jets and full jets are consistent

Pb-Pb 0-10% $\sqrt{s_{NN}} = 5.02$ TeV
ALICE Preliminary
POWHEG+Pythia8 reference

Anti-k_T $R = 0.2$ | $|\eta_{\text{jet}}^{\text{full}}| < 0.5$, $|\eta_{\text{jet}}^{\text{ch}}| < 0.7$
$p_{T,\text{lead, ch}} > 5$ GeV/c

R_{AA}

Full jets
Charged jets
Correlated uncertainty
Shape uncertainty
Correlated uncertainty
Shape uncertainty

Pb-Pb 0-10% $\sqrt{s_{NN}} = 5.02$ TeV
ALICE Preliminary
POWHEG+Pythia8 reference

Anti-k_T $R = 0.3$ | $|\eta_{\text{jet}}^{\text{full}}| < 0.4$, $|\eta_{\text{jet}}^{\text{ch}}| < 0.6$
$p_{T,\text{lead, ch}} > 5$ GeV/c

R_{AA}

Full jets
Charged jets
Correlated uncertainty
Shape uncertainty
Correlated uncertainty
Shape uncertainty
Results — Jet R_{AA}

ALICE full jet R_{AA} at 5.02 TeV is similar to 2.76 TeV for $R=0.2$, with hint of increase.

Pb-Pb 0-10% $\sqrt{s_{NN}} = 5.02$ TeV

ALICE Preliminary

Anti-k_T $R = 0.2$, $|\eta_{jet}| < 0.5$

$P_{T,lead,ch} > 5$ GeV/c

$\sqrt{s_{NN}} = 5.02$ TeV

Correlated uncertainty
Shape uncertainty

$\sqrt{s_{NN}} = 2.76$ TeV

Correlated uncertainty
Shape uncertainty
Results — Jet R_{AA}

Measurements compared to theoretical predictions:

LBT provided in arxiv:1809.02525

PRC 91 (0549098)

SCET$_G$ provided by Haitao Li

arxiv:1801.00008

PLB 769 (242)

Hybrid model provided by Daniel Pablos

JHEP 10 (2014) 19

JHEP 03 (2017) 135

JHEP 03 (2016) 53

JHEP 03 (2018) 10

JEWEL (generated internally, Ritsuya Hosokawa)

JHEP 03 (2013) 80

JHEP 07 (2017) 141

EPJ C (2016) 76:695
Results — Jet R_{AA}

All models qualitatively describe the R_{AA}

But quantitatively, most models have slight tension with the data
Results: Jet cross-section ratio

The ratio of jet cross-sections $R=0.2 / R=0.4$ in pp provides a baseline for Pb-Pb.

In pp, the jet cross-section ratio is also useful to disentangle hadronization and underlying event effects.
Results: Jet cross-section ratio

No modification in Pb-Pb is observed compared to pp

Generally consistent with previous measurements at 2.76 TeV showing no significant modification in $R \sim 0.2 - 0.4$
Results: Jet cross-section ratio

No modification in Pb-Pb is observed compared to pp

Models predict some modification, but our resolution is not good enough to distinguish them

Pb-Pb 0-10% $\sqrt{s_{NN}} = 5.02$ TeV

ALICE Preliminary

$\text{Anti-}k_T \quad |\eta_{jet}^{R=0.2}| < 0.5 \quad |\eta_{jet}^{R=0.4}| < 0.3$

$p_T^{\text{lead,ch}} > 7$ GeV/c
Discussion

1. The measured jet R_{AA} contains sufficient precision to distinguish models at low p_T, to an extent
 - However, the models use different input spectra, different medium evolution, different hadronization, different leading track biases, and different ways of fixing model parameters...
 - What does it mean for a model to be “consistent” or “inconsistent” with measured R_{AA}?

2. With the current statistical precision and systematics, we cannot experimentally distinguish R-dependence of models
 - Increased statistics will improve the statistical and unfolding uncertainties — not clear to what extent
 - ATLAS/CMS can measure jet R_{AA} for $R=0.2$-0.4 at high-p_T with high precision at 5.02 TeV — this may distinguish the R-dependence of models (e.g. pQCD vs. Hybrid model)
Summary

New pp and Pb-Pb inclusive full jet measurements from ALICE at 5.02 TeV

Jet R_{AA} with measured pp reference for $R = 0.2, 0.4$
Thank you!
Backup
Leading track requirement

Suppress combinatorial jets by requiring jets to contain a 5 GeV/c charged track.

POWHEG+Pythia8 $\sqrt{s} = 5.02$ TeV
Biased: $p_{T}^{\text{lead,ch}} > 5$ GeV/c

ALICE Simulation
R=0.2 / R=0.3 jet cross-section ratio

Pb-Pb 0-10% $\sqrt{s_{NN}} = 5.02$ TeV
ALICE Preliminary
Anti-k_T $|\eta^{R=0.2}_{\text{jet}}| < 0.5, \quad |\eta^{R=0.3}_{\text{jet}}| < 0.4$
$p_T^{\text{lead,ch}} > 5$ GeV/c

$\frac{d^2\sigma^{R=0.2}}{dp_T^{\text{jet}} d\eta^{R=0.2}_{\text{jet}}} / \frac{d^2\sigma^{R=0.3}}{dp_T^{\text{jet}} d\eta^{R=0.3}_{\text{jet}}}$

- 0 - 10% Pb-Pb
- Correlated uncertainty
- Shape uncertainty
- POWHEG+Pythia8
- Scale + PDF uncertainty
- JEWEL, recoils on, 4MomSub
- JEWEL, recoils off
Jet cross-section ratio, charged jets

\[\frac{\sigma(R=0.2)}{\sigma(R=0.3)} = f(p_{T,\text{ch jet}}) \]

ALICE Pb-Pb 0 - 10% \(\sqrt{s_{NN}} = 5.02 \text{ TeV} \)

Charged jets Anti-\(k_T \)

\[| \eta_{\text{jet}}^{0.2} | < 0.7 \quad | \eta_{\text{jet}}^{0.3} | < 0.6 \]

\(p_{T,\text{lead}} > 5 \text{ GeV/c} \)

ALICE Preliminary