Quarkonium measurements in heavy-ion collisions at $\sqrt{s_{NN}} = 200$ GeV with the STAR experiment

Zhen Liu (for the STAR Collaboration)
State Key Laboratory of Particle Detection and Electronics
University of Science and Technology of China
Quarkonium production mechanism

- Quarkonium production can be factorized into:
 - Perturbative: production of heavy $q\bar{q}$ pair
 - Non-perturbative: quarkonium formation; involves long distances and soft momentum scales
 - Models differ in the treatment of hadronization

Jianwei Qiu, ECT* workshop, 2016
Use quarkonium to probe QGP

• Heavy-quark pairs: early creation & long lived
 • Created mostly before the quark-gluon plasma (QGP) formation
 • Experience entire evolution of QGP

• Dissociation \rightarrow evidence of deconfinement
 • Quark-antiquark potential is color-screened by surrounding partons

• Sequential suppression \rightarrow constrain medium temperature
 • Different quarkonium states of different binding energies dissociate at different temperatures

A. Mocsy, EPJ C61 (2009) 705
The Complications

• Regeneration
 • Much smaller effect for $b\bar{b}$
 $\rightarrow R_{AA}$ measurements

• Cold nuclear matter (CNM) effects:
 • Nuclear PDF: shadowing/anti-shadowing
 • Nuclear absorption
 • Interact with co-movers
 • ...
 \rightarrow Measurements in p+A

• Feed-down
The Solenoid Tracker At RHIC (STAR)

- **Mid-rapidity detector**: $|\eta| < 1$, $0 < \varphi < 2\pi$

 ![Diagram of the Solenoid Tracker](image)

 - **TPC**: measure momentum and energy loss
 - **TOF**: measure time of flight
 - **BEMC**: trigger on and identify electrons
 - **MTD** (45% in φ, $|\eta|<0.5$): trigger on and identify muons
 - Timing measurement ($\sigma \sim 100$ ps) and spatial resolution (~ 1 cm)
 - Facilitate separation of ground and excited Υ states
Quarkonium cross section in p+p collisions

- Inclusive J/ψ and Υ measurements at 200 and 500 GeV:
 - J/ψ: models describe the quarkonium production cross-section reasonably well
 - Υ: follow world-wide data trend predicted by CEM

2018/10/03
Zhen Liu (USTC), Hard Probes 2018
J/ψ polarization in p+p Collisions

- J/ψ polarization parameters in helicity and Collins-soper frames compared with NRQCD calculations using two sets of Long Distance Matrix Elements (LDMEs)
- NRQCD calculations are consistent with data within uncertainties
- J/ψ polarization at low p_T can be used to constrain the LDMEs

Inclusive J/Ψ R_{pAu} vs. R_{dAu} vs. model

- R_{pAu} is consistent with R_{dAu} within uncertainties
 - 1.4σ difference at $3 - 6$ GeV/c
- Data favor additional suppression mechanism on top of nPDF effects
\(\psi(2S)/\psi(1S) \) double ratio in pAu

- First double ratio measurement at mid-rapidity at STAR
Upsilon suppression at STAR

• Improved precision of Υ measurements
 • Additional 2016 data are combined with those taken in 2014 and 2011 (di-muon and di-electron results are combined)

• $\Upsilon(2S+3S)$ more suppressed than $\Upsilon(1S)$ in central collisions \rightarrow sequential melting

• Suppression increases from peripheral to central collisions
\(\Upsilon(1S) \) suppression: STAR vs. CMS

- \(\Upsilon(1S) \): compatible with CMS result

\[\frac{R_{AA}}{N_{\text{part}}} \]

\[\frac{R_{AA}}{p_T} \text{(GeV/c)} \]

CMS: PLB 770 (2017) 357

\[\Upsilon(1S) \rightarrow \mu^+\mu^- \text{, } |y|<0.5 \]

\[\Upsilon(1S) \rightarrow \mu^+\mu^- \text{, } |y|<2.4 \]

\[\Upsilon(1S) \rightarrow \mu^+\mu^- \text{, } |y|<0.5 \]

\[\Upsilon(1S) \rightarrow \mu^+\mu^- \text{, } |y|<2.4 \]
\(\Upsilon(2S+3S) \) suppression: STAR vs. CMS

• \(\Upsilon(2S+3S) \): indication of less suppression at RHIC than at LHC in peripheral collisions

2018/10/03

Zhen Liu (USTC), Hard Probes 2018
\(\Upsilon \) suppression: data vs. models

- Rothkopf:
 - Lattice-vetted heavy-quark potential embedded in a hydrodynamically evolving medium
 - No CNM or regeneration effect

- Rapp:
 - T-dependent binding energy; Kinetic rate equation
 - Includes CNM and regeneration effects

- Both models show agreement with the \(\Upsilon(1S) \) data from STAR
- Rothkopf model seems to underestimate the \(\Upsilon(2S+3S) \) \(R_{AA} \) in the 30-60% centrality
Summary

• p+p
 • Models describe the quarkonium production cross-section reasonably well
 • J/ψ polarization at low p_T can be used to constrain the LDMEs

• p+Au
 • J/ψ R_{pAu} measurement: additional suppression mechanisms seem to be favored by data, but nPDF effects only cannot be fully ruled out yet

• A+A
 Υ(1S):
 • Indication of stronger suppression towards central collisions
 • Similar suppression as that at the LHC
 • Consistent with model predictions

 Υ(2S+3S):
 • More suppressed than Υ(1S) in 0-10% central collisions \rightarrow sequential melting
 • Indication of less suppression at RHIC than at the LHC in peripheral collisions
Thank you!