Quarkonium production in Pb-Pb and Xe-Xe collisions with ALICE at the LHC

Markus K. Köhler Heidelberg University

on behalf of the ALICE Collaboration

October 3rd, 2018

International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions 30 September 2018 to 5 October 2018 • Aix-Les-Bains • France

Quarkonium production as a probe in heavy-ion collisions

• Connects perturbative $(m_{Q\bar{Q}} \gg \Lambda_{QCD})$ with non-perturbative $(Q\bar{Q} \rightarrow hadron)$ scales • Quarkonia are hard probes which are sensitive to the hot and dense medium

Quarkonium measurements in ALICE

Dielectron channel

- Min. bias trigger
- ► |y_{ee}| < 0.9
- ► $\Delta m/m \sim 1$ %

Dimuon channel

- Dimuon trigger
- ► $2.5 < y_{\mu\mu} < 4$
- $\Delta m/m \sim 2 \%$

Run2 luminosities used ($\mathscr{L}_{2\mu}|\mathscr{L}_{MB}$)

Coll. system	$\sqrt{s_{(NN)}}$ (TeV)	
	5.02	5.44
рр	$106 19 \text{ nb}^{-1}$	-
Pb-Pb	225 14 μb^{-1}	-
Xe-Xe	-	$0.34 0.26~\mu{ m b}^{-1}$

• Possibility to measure all quarkonia down to zero p_{T}

Cross section measurements in pp at mid-rapidity High-precision reference Model comparison

- Superseding the previous pp reference from an interpolation procedure with the pp data at 5 TeV taken in 2017 \rightarrow decrease of uncertainty by a factor $\gtrsim 2$
- ▶ NRQCD(+CGC) together with FONLL (b→ J/ψ) describes the p_T spectrum

New!

${\sf J}/\psi$ nuclear modification factor vs rapidity

- Weaker suppression at mid- compared to forward rapidity
- Expected in (re)generation scenario from larger charm-quark density

J/ψ nuclear modification factor vs centrality Mid-rapidity Forward rap

Models including (re)generation describe centrality dependence of the data

▶ Need higher precision on $\sigma_{c\bar{c}}^{PbPb}$ for a better discrimination between models

New!

ALTCE

- Comparable suppression for mid- and forward rapidity at high p_{T}
- ► R_{AA} increases towards lower p_T, stronger for mid- than forward rapidity → (Re)generated J/ψ concentrated at low p_T
- ► Trend for different centralities described by transport model

- Trend described by transport and statistical hadronisation model
- Transport model describes the shape, but slightly undershoots the data
- ▶ Hadronisation model describes low $p_{\rm T}$, but undershoots for $p_{\rm T} \gtrsim 4 \ {\rm GeV}/c$

${\rm J}/\psi$ elliptic flow

- (Re)generated J/ ψ inherit elliptic flow from deconfined (thermalised) charm quarks
- Positive v₂ measured at mid- and forward rapidity
- \blacktriangleright Transport models describe data at low $p_{\rm T},$ undershoot for $p_{\rm T}\gtrsim 5~{\rm GeV}/c$

${\sf J}/\psi$ elliptic and triangular flow at forward rapidity

- \blacktriangleright v_3 sensitive to initial nucleon distributions in the overlap region
- First (!) observation of positive $J/\psi v_3$ in Pb–Pb collisions (3.7 σ)
- Ordering $v_n(J/\psi) < v_n(D^0) < v_n(h^{\pm})$ with $n = \{2,3\}$ for low p_T
- $v_2(J/\psi) \approx v_2(D^0) \approx v_2(h^{\pm})$ for $p_T \gtrsim 6 \text{ GeV}/c$
- \blacktriangleright Event shape engineering shows a correlation between bulk and J/ ψ v₂

J/ψ nuclear modification factor in Xe-Xe collisions New! [ALICE Coll., arXiv:1805.04383] [ALICE Coll., PLB 766 (2017) 212] B_{AA} ₹ €14 ALICE inclusive $J/\psi \rightarrow \mu^+\mu^-$, 2.5 < y < 4 ALICE Inclusive $J/\psi \rightarrow u^+u^-$ Pb-Pb \s...= 5.02 TeV 2.5 < v < 4Ph-Ph (.l/w: --direct --regenerated) 0.8 0.6 0.5 0.4 Data SHM (Andronic et al.) Xe-Xe Vs.iii = 5.44 TeV (arXiv:1805.04383) 0.2 Pb-Pb Vs... = 5.02 TeV (PLB 766(2017)212) 100 200 300 400 200 250 50 100 150 < N_{part}

- Study nuclear modification in a smaller collision system
 - \rightarrow Same fireball volume with different shape at fixed $\mathit{N}_{\rm part}$
- Data suffers from large statistical uncertainty
- Transport and statistical hadronisation model consistent with data

ALTCE

Υ nuclear modification factor at forward rapidity

[ALICE Coll., arXiv:1805.04387 [nucl-ex]]

- Strong suppression seen towards central collisions
- ► At current collision energies no sensitivity to (re)generation component in beauty sector

Υ nuclear modification factor vs rapidity

[ALICE Coll., arXiv:1805.04387 [nucl-ex]] [CMS Coll., arXiv:1805.09215 [hep-ex]]

▶ No rapidity dependence of ΥR_{AA} observed for |y| < 4▶ $R_{AA}^{\Upsilon(2S)}/R_{AA}^{\Upsilon(1S)} = 0.28 \pm 0.12(\text{stat}) \pm 0.06(\text{syst})$ in 2.5 < y < 4

Summary and conclusions

- Results on quarkonium production shown as function of centrality, rapidity and p_{T}
- (Re)generation dominant production mechanism for J/ψ \rightarrow Need higher precision on data and models for a better discrimination \rightarrow PbPb run 2018
- ▶ Non-zero v_2 of J/ ψ suggests thermalisation of charm quarks within the medium
- Positive v_3 of J/ψ with a significance of 3.7 σ observed \rightarrow Input from theory would be very much appreciated
- ▶ J/ ψ R_{AA} in Xe-Xe collisions similar to Pb-Pb and described by models
- ▶ Strong suppression of Υ in Pb-Pb collisions, no rapidity dependence for |y| < 4
- \blacktriangleright Studies on J/ ψ polarisation in Pb-Pb collisions at 5 TeV ongoing

 \rightarrow Coherent J/ ψ photo-production in Pb-Pb collisions, Laure Massacrier, Tue. 9:40

 \rightarrow Quarkonium in p–Pb collisions, Antoine Lardeux, Tue. 15:40

backup

A Large Ion Collider Experiment

Signal extraction

 $J/\psi \rightarrow \mu^+\mu^-$

 $\Upsilon \to \mu^+ \mu^-$

[ALICE Coll., arXiv:1805.04387 [nucl-ex]]

Comparison of the new results at mid-rapidity

$J/\psi v_3$ vs pT for integrated centrality

${\rm J}/\psi$ polarisation in Pb-Pb collisions

- ► Test/constrain models beside cross sections through polarisation of quarkonia (J^{PC} = 1⁻⁻)
- Angular distribution $W(\cos \theta, \varphi)$ \rightarrow Polarisation parameters $\lambda_{\theta}, \lambda_{\varphi}, \lambda_{\theta\varphi}$
- Ongoing work for Pb-Pb collisions in forward direction

Inclusive J/ ψ cross section at $\sqrt{s} = 5$ TeV vs p_T Butenschoen & Kniehl, PRL 106 (2011) 022003] [Ma, Wang & Chao, PRL 106 (2011) 042002] $d^2 \sigma / dp_T dy (\mu b / (GeV/c))$ [Ma & Venugopalan, PRL 113 (2014) 192301] ALICE preliminary [Cacciari et al., JHEP10 (2012) 137] pp $\sqrt{s} = 5.02 \text{ TeV}$ Inclusive J/ψ , |y| < 0.9f²σ/dp_dy (μb / GeV/c) $L_{\rm int} = 19.3 \text{ nb}^{-1} \pm 2.1 \%$ NRQCD. Ma et al (prompt J/w) 10 + FONLL, Cacciari et al (J/w from b) NBQCD + CGC. Ma et al (prompt J/w) + FONLL, Cacciari et al (J/y from b) 10-2 NROCD CS + CO. Butenechoen et al NROCD CS + CO. Butenschoen et al. (prompt J/ψ) 10^{-2} I/w from b FONLL. Cacciari et + FONLL, Cacciari et al (J/w from b) $p_{-}^{8}(\text{GeV}/c)^{10}$ *p*_(GeV/*c*) AT.T-PREL-306449

- Compare cross sections to NLO NRQCD calculations (only prompt-J/ ψ)
- ▶ Add non-prompt component from FONLL $(B \rightarrow J/\psi)$
- Good agreement over the measured p_T range

Heavy-quark potential in the medium

[Burnier, Kaczmarek & Rothkopf, JHEP 1512 (2015) 101, JHEP 1610 (2016) 032]

- ► Connects perturbative $(m_{Q\bar{Q}} \gg \Lambda_{QCD})$ with non-perturbative $(Q\bar{Q} \rightarrow hadron)$ scales
- Quarkonia are hard probes which are sensitive to the hot and dense medium
- Active field of research in experiment, phenomenology and theory