

A step towards tagging of quenched jets

<u>Yi Chen³</u>, Guilherme Milhano¹, Liliana Apolinario¹, Yen-Jie Lee² Hard Probes, Oct 3, 2018

¹ LIP & IST
² MIT
³ CERN

Different aspects of jet

Different algorithm = different phase space = different behavior

Correlations

- What can we learn by correlating different observables?
- Can we use one to classify jets and another one to extract physics?
- If we have an observable on the initial opening angle, we can access for example coherence/ incoherence effect

Can we "tag" the initial shower shape?

The goal

Find some set of observables that reproduce the properties of the hard splitting, both in vacuum and in medium

Mapping jet splittings

NN 20

Decluster jet (C/A) and

follow harder branch

 (z, θ)

 (z, θ)

 $\in (z, \theta)$

 $K(z, \theta)$

JHEP 09 (2017) 83 arXiv 1808.03689; M Verweij Oct 3 9:00

Jewel: a case study

First step: find a way to slice this plane so that vacuum and jewel results look similar

arXiv 1808.03689; M Verweij Oct 3 9:00

Jewel: a case study

First step: find a way to slice this plane so that vacuum and jewel results look similar

arXiv 1808.03689; M Verweij Oct 3 9:00

Soft drop grooming

Soft drop grooming

Is there a soft drop grooming setting (z_{cut}, β) that can achieve the goal?

Soft drop condition: $z_g > z_{cut} (\Delta R/R_0)^{\beta}$

Soft drop grooming

Is there a soft drop grooming setting (z_{cut}, β) that can achieve the goal?

Soft drop condition: $z_g > z_{cut} (\Delta R/R_0)^{\beta}$

Classic grooming

Classic: Catches large angle soft particles

Pros and cons

Classic: Catches large angle soft particles

$\beta < 0 (0.15, -2.00)$

Only span part of opening angles

> 90% jets completely groomed away

Pros and cons

Classic: Catches large angle soft particles

Large ß

Very small z_g, hard to control experimentally

Only span part of opening angles

Pros and cons

Classic: Catches large angle soft particles

$(Z_{cut} = 0.25, \beta = 0.00)$

Grooming: flat as a function of opening angle Has potential to "tag" the initial angle Distribution looks similar between vacuum and jewel

$(Z_{cut} = 0.25, \beta = 0.00)$

Grooming: flat as a function of opening angle Has potential to "tag" the initial angle Distribution looks similar between vacuum and jewel

What can we study?

V-tagged jets, Jet R_{AA} fragmentation function, mass, radial profile

Balanced splitting at small angle

Structure of the "recoil"; Coherent emission

ΔR

Balanced splitting at large angle

Correlate with grooming with $\beta > 0$ to study protected structures

Correlation with other observables: examples

Z-tagged jet

Identify Z boson and look at away-side jet energy

Jets with large-angle balanced splitting lose more energy compared to those with smaller angle

Z-tagged jet

Identify Z boson and look at away-side jet energy

Jets with large-angle balanced splitting lose more energy compared to those with smaller angle

Groomed PT (0.10, 0.00)

Groomed jet PT with (0.10, 0.00) as a function of opening angle of first uniform splitting

In vacuum, regardless of the opening angle, groomed-away energy is minimal

Groomed PT (0.10, 0.00)

Select only jets with small opening angle, examine groomed jet PT with (0.10, 0.00)

Vacuum ~ no-recoil > recoil

irst 1-0.2

Opening angle of first balanced splitting = 0.1-0.2

(0.5, 1.5) grooming setting

Stronger grooming at large angle

Weak grooming at small angle

Focus on the core of the jet

Groomed PT (0.50, 1.50)

First balanced splitting at small angle: measure of the amount of recoil

Groomed PT (0.50, 1.50)

Recoil

No-recoil

Vacuum

First balanced splitting at large angle: how is the **leading subjet** modified when there is large scale structure? Summary

Summary and outlook

- There is potential in tagging initial splitting properties with one observable and looking at other observables
 - Potential probe of coherence emission and many other aspects of jets
- Work is ongoing to search for better taggers, and to strengthen the tagging properties
- Apply on other types of generators
- Study of effect from background subtraction

Backup Slides Ahead

