

D⁰ meson production in jets in pp and PbPb collisions with the CMS detector

Michael Peters on behalf of the CMS Collaboration

Hard Probes 2018 Oct. 2, 2018 Aix-les-Bains, France

Why study D⁰ meson production in jets?

- Enhancement of low p_T light hadrons at large angles about jets
 - Light hadron jet shape analysis

Why study D⁰ meson production in jets?

pp 27.4 pb⁻¹ (5.02 TeV) PbPb 404 µb⁻¹ (5.02 TeV)

Phys. Lett. B 730 (2014) 243

- Enhancement of low p_T light hadrons at large angles about jets
 - Light hadron jet shape analysis

How to explain this?

- medium-induced gluon radiation?
- medium response?
- modification of jet splitting function?

•

Why study D⁰ meson production in jets?

pp 27.4 pb⁻¹ (5.02 TeV) PbPb 404 μb⁻¹ (5.02 TeV)

Phys. Lett. B 730 (2014) 243

Enhancement of low p_T light hadrons at large angles about jets

- Light hadron jet shape analysis
- How to explain this?
 - medium-induced gluon radiation?
 - medium response? $m_c \gg T_{QGP}$: suppressed!
 - modification of jet splitting function?
 -
 - Vary mass of the associated hadrons
 - Heavy flavor!

 D^0

Even more ...

Production of charm and D⁰ in QGP

- Mechanisms of charm production:
 - Hard scattering
 - Decay of b quarks
 - Gluon splitting
- Mechanisms of D⁰ production in jets:
 - Hadronization of charm (or bottom) quark jet
 - Decay of B meson
 - Hadronization after gluon splitting
- Different mechanisms of D⁰ production probe different **production times!**

Even more ...

Heavy-flavor energy loss due to medium interactions

- Lower longitudinal drag
- Harder individual interactions
- More broadening of radial profile
- Higher longitudinal drag
- Softer individual interactions
- Less broadening of radial profile

Dataset and observables

- Jet-triggered events in pp (27.4 pb⁻¹) and PbPb (404 μ b⁻¹) collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ collected in 2015 with the CMS detector
- MinimumBias events are used for background subtraction
- Cross-checked with D⁰-triggered events

• Jet-triggered events in pp (27.4 pb⁻¹) and PbPb (404 μ b⁻¹) collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ collected in 2015 with the CMS detector

• Radial distribution of D⁰ with respect to the jet axis:

$$\frac{1}{N_{JD}}\frac{dN_{JD}}{dr} = \frac{1}{N_{JD}}\frac{N_{JD}|_{\Delta r}}{\alpha \times \epsilon}$$

- The final distribution is normalized to unity in r < 0.3
- No p_T weight as light-hadron jet shape analysis

D⁰ meson production

- $c \rightarrow D^0$: O(50%) of c cross-section
- D⁰→Kπ: 3.93 ± 0.04%
- D⁰ cτ = 122.9 μm

D⁰ and jets reconstruction and selections

• Jet-triggered events in pp (27.4 pb⁻¹) and PbPb (404 μ b⁻¹) collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ collected in 2015 with the CMS detector

 $\bullet \quad D^0 \to K\pi$

- D⁰ vertex reconstruction
 - pairing two tracks
 - kinematic fitter
- Topological selections
 - Pointing angle (α) < ~0.04
 - 3D decay length (d₀) normalized by its error > ~3
 - Secondary vertex prob > ~0.05
- |y^D| < 2
- Two p_T bins
 - 4 < p_T^D < 20 GeV
 - p_T^D > 20 GeV

D⁰ and jets reconstruction and selections

• Jet-triggered events in pp (27.4 pb⁻¹) and PbPb (404 μ b⁻¹) collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ collected in 2015 with the CMS detector

 D^0

 $\bullet \quad D^0 \to K\pi$

- D⁰ vertex reconstruction
 - pairing two tracks
 - kinematic fitter
- Topological selections
 - Pointing angle (α) < ~0.04
 - 3D decay length (d₀) normalized by its error > ~3
 - Secondary vertex prob > ~0.05
- |y^D| < 2
- Two p_T bins
 - 4 < p_T^D < 20 GeV
 - p_T^D > 20 GeV

- Reconstruct jets and D⁰ candidates
- Jet energy correction
- Pair all selected D⁰ candidates with all selected jets in the same event
- Extract raw yield via fitting invariant mass in bins of r
- Correct acceptance and efficiency by simulations in bins of r
- Subtract background via event mixing technique
- Correct the resolution effect by jet resolution from simulations

Raw D⁰ yield extraction

Mass distributions fitted by

- Double gaussian (Signal)
- 3rd order polynomial (Combinatorial)
- Single gaussian (K-π swapped)
 - Candidates with wrong mass assignment

Event mixing technique

- **Signal**: jets and D⁰ mesons from the same hard scattering
- Background: fake jets, fake D⁰, jets and D⁰ mesons in underlying events, jets and D⁰ mesons from different hard scatterings ...
- Must extract signal D⁰ and signal jet from 4 populations:
 - Raw (D-triggered) and MB D⁰ mesons
 - Raw (D-triggered) and MB jets

before subtraction

pure signal

Event mixing technique

- Extract signal using event mixing:
 - Match raw events with MB events that share:
 - PV position
 - HF energy
 - event plane
 - Pair D⁰ and jet samples in all possible ways:
 - (raw D⁰, raw jet)
 - (MB D⁰, raw jet)
 - (raw D⁰, MB jet)
 - (MB D⁰, MB jet)
 - Subtract radial profiles using a 3-step procedure:

before subtraction

pure signal

Event mixing technique

Background subtraction

- Signal = Raw Background
- Background contributions are much smaller than signal

Low D⁰ p_T: 4 < p_T^D < 20 GeV/c

High D⁰ p_T: p_T^D > 20 GeV/c

- Low $D^0 p_T$: reach maximum at 0.05 < r < 0.1
- High $D^0 p_T$: fall rapidly as a function of r

- predictions from PYTHIA 8
 - Low $D^0 p_T$: produce a wider radial profile than measurements
 - High $D^0 p_T$: agree with measurements

- The ratio of PbPb over pp:
- Low $D^0 p_T$: increases as a function of r
 - Hint that D⁰ are further from jet axis in PbPb than pp
- High D⁰ p_T: consistent with unity

Charged-Particle Jet Shape

Low D⁰ p_T: 4 < p_T^D < 20 GeV/c

- D⁰ radial profiles do not show the decreasing PbPb/pp trend seen in high-pt charged particles
- Possible hint of charm diffusion in medium; more statistics required to be conclusive

Summary

- First measurement of the radial profile of D⁰ mesons in jets in PbPb and pp
 - Hint of wider D⁰ radial profile in PbPb collisions at $4 < p_T^D < 20$ GeV/c
 - Ratio of PbPb/pp is consistent with unity at $p_T^D > 20$ GeV/c
- Provides new experimental constraints on
 - heavy-flavor production
 - heavy quark energy loss and diffusion

The MIT group's work was supported by US DOE-NP

Back up

Thanks for your attention!

Raw D⁰ yield extraction

Background subtraction

Analysis strategy

Even more ...

Production mechanism of charm

- Gluon splitting produces broader D⁰ radial profile than a charm jet
- Radial profile measures relative contribution of each mechanism

Last slide

Outlook

- Higher statistics with 2018 PbPb data
- Centrality dependence of the radial profile of D⁰ mesons
- Fragmentation function of D⁰ mesons in jets

The MIT group's work was supported by US DOE-NP

Outlook

Outlook

- Higher statistics with 2018 PbPb data
- Centrality dependence of the radial profile of D⁰ mesons
- Fragmentation function of D⁰ mesons in jets