High luminosity Fixed Target ExpeRiment at the LHC (AFTER@LHC)

Cynthia Hadjidakis IPN Orsay, Paris-Sud/Paris-Saclay University,France

AFTER@LHC Study Group: http://after.in2p3.fr

Hard Probes 2018 30 September - 5 October, 2018

Outline

- A fixed-target experiment with LHC proton and lead beams: main kinematic features and advantages
- Possible technical implementations
- Achievable luminosities in ALICE and LHCb and ongoing investigations/ projects

AFTER@LHC review paper arXiv:1807.00603 To be submitted to Physics Report

A Fixed-Target Programme at the LHC: Physics Case and Projected Performances for Heavy-Ion, Hadron, Spin and Astroparticle Studies

C. Hadjidakis^{a,1}, D. Kikoła^{b,1}, J.P. Lansberg^{a,1,*}, L. Massacrier^{a,1}, M.G. Echevarria^{c,2}, A. Kusina^{d,2},
I. Schienbein^{e,2}, J. Seixas^{f,g,2}, H.S. Shao^{h,2}, A. Signori^{i,2}, B. Trzeciak^{j,2}, S.J. Brodsky^k, G. Cavoto¹,
C. Da Silva^m, F. Donatoⁿ, E.G. Ferreiro^{o,p}, I. Hřivnáčová^a, A. Klein^m, A. Kurepin^q, C. Lorcé^r, F. Lyonnet^s,
Y. Makdisi^t, S. Porteboeuf^u, C. Quintans^g, A. Rakotozafindrabe^v, P. Robbe^w, W. Scandale^x,
N. Topilskaya^q, A. Uras^y, J. Wagner^z, N. Yamanaka^a, Z. Yang^{aa}, A. Zelenski^t

Physics cases and projected performances presented by:

Aleksander Kusina *Probing the high-x content of the nuclei in the fixed-target mode at the LHC* **Jean-Philippe Lansberg** *Future heavy-ion facilities: fixed-target at LHC (AFTER)* **Antonio Uras** *Heavy-flavour-production studies in a new energy and rapidity domain with the nuclear LHC beams in the fixed-target mode*

Nodoka Yamanaka Ultra-peripheral collision studies in the fixed-target mode with the proton and lead LHC beams

A fixed-target experiment at the LHC

Main kinematic features:

Energy range

- 7 TeV proton / 2.76 TeV Pb beam on a fixed target

beam type	CM energy $\sqrt{s_{(NN)}}$	boost $\gamma = \sqrt{s/2m}$	rapidity shift		
proton ($E = 7 \text{ TeV}$)	115 GeV	61	4.8		
lead (E = 2.76 TeV)	72 GeV	38	4.2		

 \rightarrow center-of-mass energy in-between SPS at CERN and nominal RHIC

Rapidity range

- Entire center-of-mass forward hemisphere ($y_{CM} > 0$) within 1 degree
- Easy access to (very) large backward rapidity range ($y_{CM} < 0$) and large parton momentum fraction in the target (x_2)

115 Ge

72 Ge

A fixed-target experiment at the LHC

- Several advantages of fixed-target mode:
 - Accessing high-*x* frontier ($y_{CM} < 0$ and parton momentum fraction x > 0.5)
 - Achieving high luminosity
 - Varying **atomic mass number** of the target
 - **Polarising** the target
- This can be realized at LHC in a parasitic mode!
- Fixed-target mode started at LHCb with a low density gas-target (by using SMOG)

Physics motivations

- Advance our understanding of the high-x gluon, antiquark and heavy-quark content in the nucleon and nucleus and its connection to astroparticles
- Unravel the **spin of the nucleon**: dynamics and spin distributions of quarks and gluons inside (un)polarised nucleons
- Study the quark-gluon plasma between SPS and RHIC energies over a broad rapidity domain

Possible fixed-target implementations

- Internal gas target similar to SMOG at LHCb / inspired by HERMES at HERA, RHIC polarimeter

• Full LHC proton flux: 3.4 x 10¹⁸ p/s and Pb flux: 3.6 x 10¹⁴ Pb/s on internal gas target

 \rightarrow high intensity beam on gas target

- Internal wire/foil target as in HERA-B, STAR

• Beam halo is recycled directly on internal solid targets

- Beam line extracted with a bent crystal

- Beam halo is deflected by a bent crystal
- Expected proton flux ~5 x 10^8 p/s, Pb flux ~2 x 10^5 Pb/s
- Provides a new facility with 7 TeV proton and 2.76 lead beams
- Civil engineering required

- Beam "split" by a bent crystal

- Beam halo is deflected on a solid target internal to the LHC beam pipe
- Similar fluxes as for beam extraction

 \rightarrow beam halo on dense target

Internal gas and solid target can be coupled with an existing LHC detector

Technical implementations currently discussed within the Physics Beyond Collider working group (<u>http://pbc.web.cern.ch/</u>) with a fixed-target working group evaluating the effect on the LHC beams

S.Redaelli et al. Proceedings of IPAC2018

Physics Beyond Collider Working Group meeting June 2018: https://indico.cern.ch/event/706741/

SMOG in LHCb: a gas-target demonstrator

SMOG/LHCb (System for Measuring the Overlap with Gas)

- Gas injecting into Vertex Locator (VELO) vacuum chamber: P~1.5 10-7 mbar
- LHC vacuum ion pump stations located ± 20 m on both sides
- Use full intensity of the LHC proton and lead beam without decrease of the beam lifetime
- Limited to noble gases. Already injected: He, Ne, Ar
- Limited luminosities (density, running time, ...), no p-H baseline, no heavy nuclei

Luminosity

- Maximum obtained luminosity so far: $\mathscr{L}_{p-Ne@68GeV} = 100/nb$

Internal gas target: gas-jet

Polarised H-jet polarimeter at RHIC-BNL Zelenski et al. NIM A 536 (2005) 248

- Used to measure the proton beam polarisation at RHIC
- Polarised gas: free atomic beam source (ABS) crossing the RHIC beam: H, D and ₃He possible
- 9 vacuum chambers: 9 stages of differential pumping
- Holding field in the target vacuum chamber
- Diagnostic system: Breit-Rabi polarimeter

Density

- Polarised inlet H_{\uparrow} flux: 1.3 10^{17} H/s
- Areal density $\vartheta_{H\uparrow} = 1.2 \ 10^{12} \text{ atoms/cm}^2 (10 \times \text{SMOG})$
- Much higher density can be obtained for H_2
- Gas target profile at interaction point: gaussian with a full width of \sim 6 mm

Typical luminosity

- Using nominal LHC bunch number [2808 bunches for proton and 592 for lead] and for 1 LHC year [10⁷s proton beam and 10⁶s lead beam]
- $\mathscr{L}_{p-H\uparrow} = 4.5 \ 10^{30} \text{ cm}^{-2} \text{s}^{-1} [t = 10^7 \text{s}: \mathscr{L}_{p-H\uparrow} = 45/\text{pb}]$
- $\mathscr{L}_{p-H2} = 10^{33} 10^{34} \text{ cm}^{-2} \text{s}^{-1} [t = 10^7 \text{s}: \mathscr{L}_{p-H2} = 10 100/\text{fb}]$
- Other possible gases: $D_{\uparrow},\,{}^{3}\text{He}_{\uparrow}$

350 cm

Fig. 1. H-jet polarimeter general layout.

Internal gas target: storage cell

HERMES/DESY T-shape internal storage cell target:

- Vacuum chamber target \sim 72 cm x 50 cm and pumping system
- Polarised gas: atomic beam source
- Holding field in the target chamber
- Diagnostic systems: target gas analyzer and polarimeter
- Unpolarized gas via capillary
- Proposal for LHC using an openable storage cell of 1m long and 2.8 cm wide: *C. Barschel et al. Adv.High Energy Phys. 2015 (2015)* 463141

Density

- Polarised inlet H_{\uparrow} flux: 6.5 $10^{16}\,H_{\uparrow}/s$
- Areal density $\vartheta_{H\uparrow} = 2.5 \ 10^{14} \text{ atoms/cm}^2 (\sim 100 \times \text{ gas jet})$
- Unpolarised gas pressure limited by beam lifetime

Typical luminosity

- $\mathscr{L}_{p-H\uparrow} = 0.9 \ 10^{33} \text{ cm}^{-2} \text{s}^{-1} [t = 10^7 \text{s}: \mathscr{L}_{p-H\uparrow} = 9/\text{fb}]$
- $\mathscr{L}_{p-H2} = 5.8 \ 10^{33} \text{ cm}^{-2} \text{s}^{-1} [t = 10^7 \text{s}: \mathscr{L}_{p-H2} = 58/\text{fb}]$
- $\mathscr{L}_{Pb-H\uparrow} = 1.2 \ 10^{29} \text{ cm}^{-2} \text{s}^{-1} [t = 10^{6} \text{s}: \mathscr{L}_{Pb-H\uparrow} = 100/\text{nb}]$
- $\mathscr{L}_{Pb-Xe} = 3 \ 10^{28} \text{ cm}^{-2} \text{s}^{-1} [t = 10^6 \text{s}: \mathscr{L}_{Pb-Xe} = 30/\text{nb}]$
- Other possible gases: $D_{\uparrow},\,{}^{3}\text{He}_{\uparrow},\,all$ noble gases

Beam split by using a bent crystal

Bent crystals

- Studied by UA9 for collimation purpose at the LHC
- Channelled particles of the beam halo are deflected
- Beam split by a bent crystal:
 - Crystal located ~ 100 m upstream the target
 - Solid target internal to the beam pipe close to an existing experimental apparatus
 - Absorber ~ 100 m downstream the target

Extracted proton and lead flux

- Proton flux ~5 x 10^8 p/s (LHC beam loss: ~ 10^9 p/s)
- Lead flux $\sim 2 \times 10^5$ Pb/s

Typical luminosity

- Assuming 5 mm target length
- $\mathscr{L}_{p-W} = 1.6 \ 10^{31} \text{ cm}^{-2} \text{s}^{-1} [t = 10^7 \text{s}: \mathscr{L}_{p-W} = 160/\text{pb}]$
- $\mathscr{L}_{Pb-W} = 3 \ 10^{27} \text{ cm}^{-2} \text{s}^{-1} [t = 10^{6} \text{s}: \mathscr{L}_{Pb-W} = 3/\text{nb}]$
- Target type: Be, C, W, ...

S.Redaelli, Physics Beyond Collider Kickoff workshop, CERN, 2016

Detector requirements for a LHC fixed-target programme

- Wide rapidity coverage (rapidity shift: $\Delta y = 4.8$ with proton beam and 4.2 with lead beam) with PID and vertexing capabilities
- Readout rate similar as LHC collider: up to 40 MHz in pp, 300 MHz in pA and 200 kHz in PbA
- Heavy-ion: good detector performance in **high-multiplicity events**, up to 600 charged tracks per unit of rapidity at $\eta_{lab} \sim 4$

LHCb as a fixed-target experiment

Achievable luminosities with gas target (storage cell): $-\mathscr{L}_{p-H\uparrow@115GeV} = 10/\text{fb}, \mathscr{L}_{p-Xe@115GeV} = 300/\text{pb} [t = 10^7\text{s}]$ $-\mathscr{L}_{Pb-Xe@72GeV} = 30/\text{nb}, \mathscr{L}_{Pb-H\uparrow@72GeV} = 100/\text{nb} [t = 10^6\text{s}]$ With beam splitting and 5 mm solid target: $-\mathscr{L}_{p-W@115GeV} = 160/\text{pb} [t = 10^7\text{s}]$ $-\mathscr{L}_{Pb-W@72GeV} = 3/\text{nb} [t = 10^6\text{s}]$

Projects under investigation in LHCb

Several investigations/projects:

• Beam splitting and internal W solid target (with a second crystal) for Electromagnetic Dipole Moment of charmed baryons

G.Graziani Annual

Workshop PBC,

June 2018

- Polarized storage cell gas target for spin physics
- Unpolarized storage cell gas target (SMOG2)

SMOG2 internal storage cell target:

- Openable storage cell of 20 cm long attached to the VELO
- Unpolarized gas via capillary: gas feed tube in the cell center

P. DiNezza Annual Workshop PBC, November 2017

Density

- Gas pressure up to $100 \times \text{SMOG: P} \sim 10^{-5} \text{ mbar}$

Possible systems and luminosities (not approved by LHCb)

- p-H, p-D, p-Ar, Pb-Ar, ...
- $\mathscr{L}_{p-H@115GeV} = 10/pb$
- $\mathscr{L}_{p-D@115GeV} = 10/pb$
- $\mathscr{L}_{Pb-Ar@,72GeV} = 5/nb (+ \mathscr{L}_{p-Ar@,72GeV} = 1/pb)$
- Luminosity increase by up to an order of magnitude could be feasible
- Discussion ongoing on target types, parallel / dedicated running, possible vacuum issue, ...

Formal approval of SMOG2 this Fall and installation foreseen in **LS2**

Unpolarised storage cell: open position view

Unpolarised storage cell: closed position view

ALICE in a fixed-target mode

Achievable luminosities with gas target:

 $-\mathscr{L}_{p-H2/H\uparrow@115GeV} = 260/pb, \mathscr{L}_{p-Xe@115GeV} = 8/pb$

 $-\mathcal{L}_{Pb-Xe@72GeV} = 8/nb$

With beam splitting and at most 5 mm solid target:

 $-\mathcal{L}_{p-W@115GeV} = 6/pb$

 $-\mathcal{L}_{Pb-W@72GeV}=3/nb$

Fixed-target investigation in ALICE

Current investigation:

• Beam splitting and internal solid target

Internal solid target:

- Inside the L3 solenoid
- Pneumatic motion system with two positions IN and OUT of the beam pipe

C.H. Annual Workshop PBC, June 2018

Detector acceptance vs ztarget

Caveat: simple geometry

considerations using reduced

The rapidity coverage is shifted towards larger rapidities (mid-rapidity in the c.m.s) if the vertex is located few meters upstream the I.P.

Acceptance in center-of-mass rapidity

In a fixed-target mode:

-ALICE Central Barrel covers very backward rapidity and Muon

Spectrometer covers rapidity interval towards mid-rapidity

–LHCb: wide rapidity range starting from $y_{cms} \sim 0$

Summary

- Three main physics motivations for a high-luminosity fixed-target program at the LHC:

 -High-x frontier: nucleon and nuclear structure and connections with astroparticles
 -Nucleon spin and the transverse dynamics of partons
 -Quark Gluon Plasma over a broad rapidity domain
- Two promising technical implementations with large luminosities:

 -an internal gas-target (gas-jet or storage cell)
 -a slow beam extraction with a bent crystal on an internal solid target
- Investigations/projects in ALICE and LHCb ongoing for the implementation of fixed-target setup

back-up slides

Achievable luminosities in ALICE

			ALICE							
Target			proton beam ($\sqrt{s_{NN}} = 115 \text{ GeV}$)				Pb beam $(\sqrt{s_{NN}} = 72 \text{ GeV})$			
			L	σ_{inel}	Inel rate	∫L	L	σ_{inel}	Inel rate	∫L
			$[cm^{-2}s^{-1}]$		kHz		$[cm^{-2}s^{-1}]$		kHz	
		H [↑]	4.3 x 10 ³⁰	39 mb	168	43 pb ⁻¹	5.6 x 10 ²⁶	1.8 b	1	0.56 nb ⁻¹
	Gas-Jet	H ₂	2.6 x 10 ³¹	39 mb	1000	$0.26{\rm fb}^{-1}$	2.8 x 10 ²⁸	1.8 b	50	28 nb ⁻¹
Internal and toward		D	4.3 x 10 ³⁰	72 mb	309	43 pb ⁻¹	5.6 x 10 ²⁶	2.2 b	1.2	0.56 nb-1
		³ He [↑]	8.5 x 10 ³⁰	117 mb	1000	85 pb ⁻¹	2.0 x 10 ²⁸	2.5 b	50	20 nb ⁻¹
	Storage Cell	H [↑]	2.6 x 10 ³¹	39 mb	1000	0.26 fb ⁻¹	2.8 x 10 ²⁸	1.8 b	50	28 nb ⁻¹
Internal gas target		H ₂	2.6 x 10 ³¹	39 mb	1000	0.26 fb ⁻¹	2.8 x 10 ²⁸	1.8 b	50	28 nb ⁻¹
		D^{\dagger}	1.4 x 10 ³¹	72 mb	1000	140 pb ⁻¹	2.2 x 10 ²⁸	2.2 b	50	22 nb ⁻¹
		³ He [†]	8.5 x 10 ³⁰	117 m b	1000	85 pb ⁻¹	2.0 x 10 ²⁸	2.5 b	50	20 nb ⁻¹
		Xe	7.8 x 10 ²⁹	1.3 b	1000	7.8 pb ⁻¹	8.1 x 10 ²⁷	6.2 b	50	8.1 nb ⁻¹
		C (500 µm)	2.8 x 10 ³⁰	27 l mb	760	28 pb ⁻¹	5.6 x 10 ²⁶	3.3 b	1.8	0.56 nb ⁻¹
Internal solid target with beam halo	Wire Target	Ti (500 μm)	1.4 x 10 ³⁰	694 mb	971	14 pb ⁻¹	2.8 x 10 ²⁶	4.7 b	1.3	0.28 nb ⁻¹
win team nato		$W(184 \mu m^{29} / 500 \mu m^{30})$	5.9 x 10 ²⁹	1.7b	1000	5.9 pb ⁻¹	3.1 x 10 ²⁶	69 b	2.1	0.31 nb ⁻¹
	E1039	NH_3^{\dagger}	2.6 x 10 ³¹	39 mb	1000	0.26 fb ⁻¹	1.4 x 10 ²⁸	1.8 b	25	14 nb ⁻¹
Beam splitting		ND_3^{\dagger}	1.4 x 10 ³¹	72 mb	1000	140 pb-1	1.4 x 10 ²⁸	2.2 b	30	14 nb ⁻¹
	Unpolarised solid target	C (658 µm/ 5000 µm)	3.7 x 10 ³⁰	27 l mb	1000	37 pb ⁻¹	5.6 x 10 ²⁷	3.3 b	18	5.6 nb ⁻¹
		$Ti (515 \mu m / 5000 \mu m)$	1.4 x 10 ³⁰	694 m b	1000	14 pb ⁻¹	2.8 x 10 ²⁷	4.7 b	13	2.8 nb ⁻¹
		$W(184 \mu m / 5000 \mu m)$	5.9 x 10 ²⁹	1.7b	1000	5.9 pb-1	3.1 x 10 ²⁷	69 b	21	3.1 nb ⁻¹

Table 11: Summary table of the achievable integrated luminosities with the ALICE detector accounting for the data-taking-rate capabilities in the collider mode and by considering the luminosities of Table 9. As detailed in the text, a higher rate depending on the collision system could be envisioned. The inelastic cross sections are taken from EPOS [97, 132].

Achievable luminosities in LHCb

			LHCb							
Target			proton beam ($\sqrt{s_{NN}} = 115 \text{ GeV}$)				Pb beam ($\sqrt{s_{NN}} = 72 \text{ GeV}$)			
			L	σ_{inel}	Inel rate	∫L	L	σ_{inel}	Inel rate	∫L
		$[cm^{-2}s^{-1}]$		kHz		$[cm^{-2}s^{-1}]$		kHz		
		\mathbf{H}^{\uparrow}	4.3 x 10 ³⁰	39 mb	168	43 pb ⁻¹	5.6 x 10 ²⁶	1.8 b	1	0.56 nb ⁻¹
	Gas-Jet	H ₂	1.0 x 10 ³³	39 mb	40000	10 fb ⁻¹	2.8 x 10 ³⁰	1.8 b	5000	2.8 pb ⁻¹
Gas-Jet	Gas-Jet	\mathbf{D}^{\uparrow}	4.3 x 10 ³⁰	72 mb	309	43 pb-1	5.6 x 10 ²⁶	2.2 b	1.2	0.56 nb ⁻¹
		³ He [†]	3.4×10^{32}	117 mb	40000	$3.4{\rm fb}^{-1}$	4.7 x 10 ²⁸	2.5 b	118	47 nb ⁻¹
Internal		H↑	0.92 x 10 ³³	39 mb	35880	9.2 fb ⁻¹	1.2 x 10 ²⁹	1.8 b	216	120 nb ⁻¹
gas		H ₂	1.0 x 10 ³³	39 mb	40000	10 fb ⁻¹	7.5 x 10 ²⁹	1.8 b	1400	750 nb ⁻¹
target	Sto rage Cell	\mathbf{D}^{\uparrow}	5.6 x 10 ³²	72 mb	40000	5.6 fb ⁻¹	1.4 x 10 ²⁹	2.2 b	308	140 nb ⁻¹
		³ He [†]	1.3 x 10 ³³	117 mb	40000	13 fb ⁻¹	4.7 x 10 ²⁹	2.5 b	1175	470 nb ⁻¹
		Xe	3.1 x 10 ³¹	1.3 b	40000	0.31 fb ⁻¹	3.0 x 10 ²⁸	6.2 b	186	30 nb-1
Internal solid		C (500 µm)	2.8 x 10 ³⁰	271 mb	760	28 pb ⁻¹	5.6 x 10 ²⁶	3.3 b	1.8	0.56 nb ⁻¹
target with	Wire Target	Ti (500 µm)	1.4 x 10 ³⁰	694 mb	972	14 pb ⁻¹	2.8 x 10 ²⁶	4.7 b	1.3	0.28 nb ⁻¹
the beam halo		W (500 µm)	1.6 x 10 ³⁰	1.7 b	2720	16 pb ⁻¹	3.1 x 10 ²⁶	6.9 b	2.1	0.31 nb ⁻¹
	E1039	$\rm NH_3^{\uparrow}$	7.2 x 10 ³¹	39 mb	2808	0.72fb^{-1}	1.4 x 10 ²⁸	1.8 b	25	14 nb ⁻¹
Beam splitting		ND_3^{\dagger}	7.2 x 10 ³¹	72 mb	5100	$0.72 {\rm fb}^{-1}$	1.4 x 10 ²⁸	2.2 b	30	14 nb ⁻¹
	Unpo la rise d	C (5000 µm)	2.8 x 10 ³¹	271 mb	7600	280 pb ⁻¹	5.6 x 10 ²⁷	3.3 b	18	5.6 nb ⁻¹
	solid	Ti (5000 µm)	1.4 x 10 ³¹	694 mb	9720	140 pb ⁻¹	2.8 x 10 ²⁷	4.7 b	13	$2.8 \mathrm{nb}^{-1}$
	target	W (5000 µm)	1.6 x 10 ³¹	1.7 b	27200	160 pb ⁻¹	3.1 x 10 ²⁷	6.9 b	21	3.1 nb ⁻¹

Internal solid target (beam splitting)

- First sketch of the target system: pneumatic motion system with three target types
- Size of the target: diameter approximately 5mm, thickness 0.1-5mm
- Target holder: titanium alloy
- Parking position out of the pipe and 2 positions: In/Out
- One valve on each side
- Compatibility of proposed target types (Be, C, Ti, W, ...) with LHC conditions to be studied
- Compatibility of the target system with the operation of ALICE forward detectors to be verified

