# Probing spectral properties of the QGP with real-time lattice simulations





Project: CGCglasmaQGP

Kirill Boguslavski

#### Hard Probes 2018

October 04, 2018

Talk based on:

 KB, Aleksi Kurkela, Tuomas Lappi, Jarkko Peuron,

 PRD 98, 014006 (2018)
 (arXiv:1804.01966)

#### **Table of Contents**

- **1.** Motivation
- 2. New method to extract the spectral function
- **3.** First application
- 4. Conclusion

# **Motivation**

#### A typical (single-particle) spectral function

- ρ(ω, p) includes all possible excitations
   (ω: frequency, p: momentum)
- Quasiparticles emerge as Lorentz peaks

$$\sim \frac{1}{\left(\omega-\omega(p)\right)^2+\gamma^2(p)}$$

- **Dispersion**  $\omega(p)$  is energy of "on-shell" particles
- **Damping rate**  $\gamma(p)$  is inverse of their life time
- Unstable modes emerge in  $\rho(\Delta t, p)$  ( $\Delta t$ : time difference)
- More complicated structures can also be found (cuts, extra poles, etc.)



## Motivation: Unsolved problems

- $\rho(\omega, p)$  of QCD (and other theories) far from equilibrium
- Initial stages in ultra-relativistic heavy-ion collisions (URHICs) for  $g \ll 1$ :
  - Quasiparticles, instabilities?
  - Transition 2+1D Glasma ⇒ 3+1D kinetic theory not fully understood!

E.g., no dynamical transition in descriptions like KoMPoST. Kurkela et al., 1805.01604, 1805.00961

Once ab-initio understanding complete

 $\Rightarrow$  extract  $\hat{q}$ ,  $\kappa$ , transport coefficients at initial stages!

Crucial to understand jet quenching, heavy-quark diffusion. See talks by Apolinario and Cao.

• What is  $\rho(\omega, p)$  in high-T thermal equilibrium?



#### New method to extract the spectral function

**Classical-statistical lattice simulations** 

- Large occupancies  $f(p \sim \Lambda) \gg 1$ , weak coupling, real time  $\Rightarrow$  *Classical* approximation for *field dynamics* applicable
- $SU(N_c)$  gauge theory in temporal  $A_0 = 0$  gauge
- Here we will use  $N_c = 2$ , 3D spatial lattice  $N_s^3$ , lattice spacing  $a_s$
- Initialization with "quantum" initial conditions (IC):

$$\langle |A(t_0, \boldsymbol{p})|^2 \rangle \sim \frac{f(t_0, p)}{p}, \qquad \langle |E(t_0, \boldsymbol{p})|^2 \rangle \sim p f(t_0, p)$$

- Fields:  $A_i(t_0, \mathbf{p}) \rightarrow U_i(t_0, \mathbf{x}) \simeq e^{iga_s A_i(t_0, \mathbf{x})}, E_i(t_0, \mathbf{p}) \rightarrow E_i(t_0, \mathbf{x})$ , restore Gauss law
- Evolve classical EOMs in time  $D_{\mu}F^{\mu\nu} = 0$ , but in  $U_i$ ,  $E_i$  fields

Literature: E.g., Berges, KB, Schlichting, Venugopalan; Kurkela, Moore ; KB, Kurkela, Lappi, Peuron; ...

<u>Remark</u>: Gauge-invariant IC also possible: start with (classical) thermal system, gauge cool until hard scale  $\Lambda \ll 1/a_s$ 



Aarts, Berges (2002); Mueller, Son (2004); Jeon (2005)

#### New method to extract the spectral function

KB, Kurkela, Lappi, Peuron, PRD 98, 014006 (2018)

<u>Combine</u>: linear response, classical simulations

#### Perturbation





- Classical field simulations for background
- Source *j* at time *t*', Coulomb gauge  $\partial_i A_i = 0$
- Split  $A_i(t, \mathbf{x}) \mapsto A_i(t, \mathbf{x}) + a_i(t, \mathbf{x})$
- Response in linear fluctuations  $a_i$  for t > t': Solve (linear) EOM for  $a_i$ Kurkela, Lappi, Peuron,

EUJC 76 (2016) 688

- $\langle a_i(t, \boldsymbol{p}) \rangle = \int dt' G_{R,ik}(t, t', \boldsymbol{p}) j^k(t', \boldsymbol{p}),$ obtain ret. propagator  $G_{R,jk}$  from response
  - Spectral function:  $G_{R,ik} = \theta(t t') \rho_{ik}$
- Distinguish polarizations (trans., long.)

#### First application: a universal attractor (NTFP) ...

Far-from-equilibrium over occupied  $f \sim 1/g^2$  systems approach a NTFP

- Details of initial conditions lost
- ✓ Time scale independence
- Universal self-similar dynamics

 $f(t,p) = t^{\alpha} f_{S}(t^{\beta}p)$ 

Micha, Tkachev (2004); Berges, Rothkopf, Schmidt (2008); Berges, KB, Schlichting, Venugopalan (2015); ...

#### ... in isotropic non-Abelian plasmas

UniversalScale separation grows $\alpha = -4/7$  $m/\Lambda \sim (Qt)^{-2/7} \ll 1$  $\beta = -1/7$  $m/\Lambda \sim (Qt)^{-2/7} \ll 1$ 

#### Q: constant scale where energy dominated initially







## **First application: Comparison to HTL**

Hard-thermal loop theory

Braaten, Pisarski (1990); Blaizot, lancu (2002)

Perturbative formalism, usually applied to thermal equilibrium, high  $T \gg \omega, p$ 

Applicable out of equilibrium when:

- Hard scale Λ, soft modes m (mass), scale separation m/Λ ≪ 1
   ⇒ HTL can be applied to attractor in non-Abelian plasmas!
- Details of f(t, p) "hidden" in few parameters, e.g.:

$$m^2 \approx 2N_c \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \, \frac{g^2 f(t,p)}{p} \,, \qquad g^2 T_* \approx \frac{\int \mathrm{d}^3 p \, (g^2 f)^2}{2\int \mathrm{d}^3 p \, (g^2 f)/p} \,, \qquad \dots$$

Opportunity for thermal equilibrium:

Compute  $\rho(\omega, p)$  non-perturbatively with new method, compare it to HTL

#### Reminder: typical spectral function



04.10.18 | University of Jyväskylä, Finland | Kirill Boguslavski | 9

KB, Kurkela, Lappi, Peuron, *PRD 98, 014006 (2018)*  Transverse spectral function  $\rho_T$ 



#### Extracted damping rates $\gamma_{T,L}(p)$

Braaten, Pisarski,

0.02

- $\gamma_{T,L}(p)$  is  $\mathcal{O}(g^2Q)$  and beyond HTL at LO, it may contain non-perturbative contributions (magnetic scale)
- Here *first determination* of  $\gamma_{T,L}(p)$ !
- Extracted by fitting to a damped oscillator
- HTL prediction:  $\gamma_{\rm HTL}(p=0)$ PRD 42, 2156 (1990)

 $\gamma_{\rm HTL}(p \rightarrow \infty)$ : not included here, too large uncertainties Pisarski. PRD 47, 5589 (1992) due to necessary estimation of magnetic scale

"Isotropic"  $\gamma_T \approx \gamma_L$  for  $p \leq m$  while dispersions different  $\omega_T > \omega_L$  (Backup)





Check: Is damping rate indeed subleading?



• Late-time limit corresponds to LO HTL, damping rates are effects beyond LO

KB, Kurkela, Lappi, Peuron, *PRD* 98, 014006 (2018)

Statistical correlation function F



(Classical) definition:

 $\ddot{F}^{jk}(t,\Delta t,\boldsymbol{p}) = \langle E^{j}(t,\boldsymbol{p}) \; E^{*,k}(t',\boldsymbol{p}) \rangle$ 

(As always:  $\Delta t = t - t'$ , Fourier transform to  $\omega$ )

(Thermal) fluctuation-dissipation relation:  $\ddot{F}_T(t, \omega, p) / T = \dot{\rho}_T(t, \omega, p)$ 

Used to estimate thermal spectral function Example: G. Aarts, *PLB 518, 315 (2001)* 

We extract *F*, *p* independently, we observe a generalized fluctuation-dissipation relation:

$$\frac{\ddot{F}_T(t,\omega,p)}{\ddot{F}_T(t,\Delta t=0,p)} = \dot{\rho}_T(t,\omega,p)$$

#### Conclusion: One method to rule them all

- ✓ What is  $\rho(\omega, p)$  in high-T thermal equilibrium? ⇒ this work,  $\gamma_{T,L}(p)$  determined!
- Completing ab-initio understanding of initial stages of URHICs for  $g \ll 1$

⇒ New method can distinguish between plasma and vacuum numerically, will be applied to transition 2+1D classical state  $\Rightarrow$  3+1D kinetic theory

• Extract  $\hat{q}$ ,  $\kappa$ , transport coefficients at initial stages

 $\Rightarrow$  we started for far-from-equilibrium states, *in progress* 

•  $\rho(\omega, p)$  in physical systems far from equilibrium  $\Rightarrow$  first results, *in progress* 

Heavy-ion collisions

Early Universe

Ultra-cold atoms





# Thank you for your attention!

# **BACKUP SLIDES**

KB, Kurkela, Lappi, Peuron, *PRD 98, 014006 (2018)* 

# New method

Computation of (single-particle) spectral function  $\rho$ 

Linear response theory:

• Linear reponse  $\langle a_j(t, \mathbf{p}) \rangle = \int dt' G_{R,jk}(t, t', \mathbf{p}) j^k(t', \mathbf{p})$  to perturbation j

#### Our numerical approach:

- Split gauge field  $A_j(t, \mathbf{x}) \mapsto A_j(t, \mathbf{x}) + a_j(t, \mathbf{x})$ , solve *newly developed* equations for  $a_j(t, \mathbf{x})$  (also: restore Gauss law) Kurkela, Lappi, Peuron, EUJC 76 (2016) 688
- Perturb system at  $t = t_{pert}$  in Coulomb gauge  $\partial_j A_j = 0$  with a source  $\langle j_{0,a}^k(p) (j_{0,b}^l(q))^* \rangle_j = \delta_{a,b} V \delta_{p,q} v_k(p) v_l^*(q)$ Polarization Transverse:  $v \perp p$ , Obtain  $G_{R,kl}(t, t_{pert}, p) = \frac{1}{(N^2 - 1)V} \langle \langle a_k^b(t, p) \rangle (j_{0,l}^b(p))^* \rangle_j$ Longitudinal: v = p• Spectral function: use relation  $G_{R,jk} = \theta(t - t_{pert}) \rho_{jk}$   $(\rho \simeq i \langle [A, A] \rangle)$

#### New method to extract the spectral function

What is gauge invariant / covariant?

- *Equations of motion* of background (BG) field and of linearized fluctuations
- Initial conditions for the BG can, in principle, be set gauge-invariantly (starting with classical thermal system  $T \gg 1/a_s$ , gauge cool until  $\Lambda \ll 1/a_s$ )
- Correlation function  $\langle \langle a_k^a(t, \mathbf{x}) \rangle U_0^{ab}(t, t_{pert}, \mathbf{x}) j_{0,l}^b(\mathbf{x}) \rangle_j$ , where  $U_0(t, t_{pert}, \mathbf{x})$  is a Wilson line, i.e., product of  $U_0$  links. In our framework:

$$\circ \quad A_0 = 0 \ \Rightarrow \ U_0^{ab} = \delta_{ab}$$

• Use source only for one momentum p

$$\Rightarrow \left\langle \left\langle a_k^a(t, \mathbf{x}) \right\rangle U_0^{ab}(t, t_{\text{pert}}, \mathbf{x}) j_{0,l}^b(\mathbf{x}) \right\rangle_j \propto G_{R,kl}(t, t_{\text{pert}}, \mathbf{p}) \right\rangle, \text{ a gauge-inv. observ.!}$$

<u>Remark</u>: But it corresponds to  $G_R$  only in temporal gauge

• <u>Gauge-dependent</u>: The choice of the source  $j_{0,l}^b(x) \propto \sqrt{V} v_l(p) \cos px$ 

KB, Kurkela, Lappi, Peuron, *PRD 98, 014006 (2018)*  Longitudinal spectral function  $\rho_L$ 

 $\dot{\rho}_L (\simeq \omega \rho_L)$  as function of  $\Delta t = t - t'$  (left) or  $\omega$  (right) at late time  $t_{pert} \gg \Delta t$ 

- Similar as for  $\rho_T$ , existence of quasiparticles with  $\omega_L(p)$  and  $\gamma_L(p)$  ...
- ... but for  $p \gtrsim m \approx 0.15 Q$ :
  - Quasiparticle peak suppressed exponentially
  - Landau cut dominates oscillations
  - And smeared around light cone



Extracted dispersion relations  $\omega_{T,L}(p)$ 

- Extracted from peak position (for  $\omega_L$  after subtracting HTL Landau cut)
- Similar to HTL predictions:  $\omega_{T,L}^{\text{HTL}}(p)$
- Deviations at small p, for finite  $m/\Lambda$ ?
- " $\omega_L(p)$ " deviates at  $p \sim m$  because peak is  $\overline{0.2}$  smaller than Landau cut, harder to measure

<u>Remark</u>:  $\omega_T(p)$  also compatible with  $\omega_T^{\text{rel}} = \sqrt{m_{\infty}^2 + p^2}$ 



 $\omega_{T,L} / m_{\rm HTL}$ 



**Observation:**  $\frac{\ddot{F}_T(t,\Delta t,p)}{\dot{\rho}_T(t,\Delta t,p)} = \frac{\ddot{F}_T(t,\omega,p)}{\dot{\rho}_T(t,\omega,p)} = \ddot{F}_T(t,\Delta t = 0,p)$  $\ddot{F}_T$  and  $\dot{\rho}_T$  have same functional form in  $\Delta t$  or  $\omega$ !



<u>Remark</u>: Similarly for longitudinal but with larger statistical error for  $\ddot{F}_L$  in our simulations