Small-x Physics with the LHeC

Heikki Mäntysaari

University of Jyväskylä

Based on J. Phys. G39, 075001

Hard Probes 2018

Cold QCD landscape

Aschenauer et al, arXiv:<u>1708.01527</u>

Large kinematical reach of the LHeC

Kinematical reach in ep down to $x \sim 10^{-7}$

Significant extension to HERA and EIC

Partonic structure of the proton

Reduce (dominant) uncertainty in many LHC studies!

Nuclear small-x gluon: pA is not enough

Precise access to gluon requires an eA collider

See N. Armesto on Wednesday

Beyond fixed order calculations

At small x, gluon density ~ inverse coupling, and resummation of large logarithms of $\alpha_s \ln 1/x$ is necessary

Already hints in HERA data (Ball et al, arXiv:1710.05935)

LHeC: Precise data over wide (x,Q²) range

LHeC capabilities, F_L example

Potential to clearly see breakdown of perturbative expansion,

Enhancing density effects with nuclei

Non-linear effects important at $Q^2 \sim Q_s^2 \sim A^{1/3} x^{-\lambda}$ LHeC reaches saturated region in both ep and eA!

Dilute-dense-transition

LHeC capabilities

Precise measurements for the nuclear suppression factor for F_2 and even for F_L down to small x

Beyond fully inclusive observables

Dihadron production:

• Produced partons are initially back-to-back: $\gamma^* \rightarrow q\bar{q}$

Diffraction: powerful probe at small x

Benefits of diffraction

- At LO 2 gluon exchange, probes gluon density²
- Can measure total momentum transfer *t*, access to geometry via Fourier transform

Strong nuclear effects

Vector meson production~gluon², sensitive to gluon saturation

 $W=100,1000\,{\rm GeV}$

H. M, P. Zurita, 1804.05311

LHeC accuracy in exclusive scattering

High precision differential cross section measurements

Inclusive diffraction

HERA surprise: ~15% of the events diffractive! Saturation model prediction: suppression <u>and</u> enhancement with nuclei. To see this, need large energy/β lever arm)

Kowalski,Lappi,Marquet,Venugopalan

Conclusions

- Unique kinematical coverage of LHeC allows us to enter deep in the saturation region
- Nuclear beams are necessary to enhance nonlinearities (and save €€€)
- With the LHeC, we (hopefully)
 - Constrain proton and nuclear PDFs to a new level, reduce uncertainties in LHC searches
 - See breakdown of fixed order perturbative expansion
 - Can study precisely non-linear effects in the nuclear wave function
 - And much more...

BACKUPS

Intriguing UPC results

Incoherent J/ ψ production (~fluctuations in proton density) disappears at high energy, approaching black disk limit?

ALICE, QM2018, theory prediction: H.M, Schenke, 1806.06783

Dihadron correlations in eA

Energy dependence of back-to-back correlation \Rightarrow Energy dependence of Q_s

EIC simulation, theory by Bo-Wen, Feng, et al.