Measurement of inclusive, boson-tagged, and heavy-flavor-tagged jet energy loss in PbPb collisions at √s_{NN}=5 TeV with CMS detector

Xiao Wang
University of Illinois at Chicago
for the CMS collaboration

Hard Probes 2018, Aix-les-Bains, France 30th Sep - 5th Oct, 2018

Introduction

- Jet tomography is an established experimental tool for relativistic Heavy Ion studies to answer what happens if partons traverse a high energy density colored medium?
- Jet, di-jet and boson-tagged jets allow to study:
- ✓ Jet-medium interactions
- ✓ Flavor dependence of parton-medium coupling
- ✓ In-medium fragmentation/ hadronization

Jet Quenching

$$R_{AA}(p_T) = \frac{d^2 N^{AA} / dp_T d\eta}{T_{AA} d^2 \sigma^{NN} / dp_T d\eta}$$

Jet R_{AA}:
Strong suppression
No appreciable p_T dependence

Di-jet AJ

Centrality-dependent increase in the fraction of dijets with substantial energy imbalance

b-jet suppression:

Similar level of suppression for high p_T jets (p_T > 80 GeV)

What about flavor dependence?

Better understand jet energy loss compare jets from different partons.

Understanding the flavor effects

Constrains on the energy loss scenarios could be added by comparing energy redistribution patterns for inclusive jets, γ + jet and Z-boson + jet

VS.

VS.

Inclusive jets

- All initial states involved
- A mix of gluon and quark jets

γ +jet

- Good control of initial parton energy
- Larger fraction of quark jets tagged

See Kaya Tatar, Tuesday, 2 Oct

Z +jet

• Great control of initial parton energy+no contamination.

arXiv:1711.09905

Jet quenching with boson+jets

 Boson energy provides a measure of initial parton energy unbiased by the jet quenching effects

• Significant jet imbalance observed Z+jet and γ +jet.

Jet quenching with b-tagged jets

- A building block to the parton mass hierarchy in the jet energy loss.
- The source of b-jets: quarks jets from primary production (FCR+FEX) and the jets splitting from a gluon jets.

Jet quenching with b-tagged jets

- A building block to the parton mass hierarchy in the jet energy loss.
- The source of b-jets: quarks jets from primary production (FCR+FEX) and the jets splitting from a gluon jets.

• b dijet asymmetry is similar to the inclusive jet case.

Where does the energy go?

• To better understand the details of jet energy loss, detailed studies of energy distribution of jet constituents

Inclusive jet particle yield

JHEP 05 (2018) 006

The jet fragmentation pattern is modified

- correlated yield in the soft particle yield enhanced;
- the high p_T particle yield depleted.

Inclusive jet radial momentum distribution

JHEP 05 (2018) 006

• Jet energy is redistributed towards softer fragments and large radii

D⁰ meson yield profile in jets

- A hint of the low p_T D⁰ enhancement at large angle.
- Provide constraints on the heavy-flavor energy loss.

CMS-PAS-HIN-18-007

inclusive jets vs. γ +jets

Jet shape results for γ +jets show similar pattern with inclusive jet shapes:
 Central PbPb – energy redistributed towards larger radii

inclusive jets (5.02 TeV)

Summary

- Common general trend: redistribution of energy from small angles (jet core) to the larger radii.
- Comparative analysis of the **inclusive jets** and **boson-tagged jets** help to understand the difference in quark vs. gluon energy loss mechanism.
- New constraints on flavor-dependent aspects of energy loss and medium response

The work of the UIC group is supported by US DoE-NP

Back up

isolated photon + jets

Jets

Jet Reconstruction

- Anti-k_t calorimeter jets, R = 0.4
- PbPb: pile-up UE subtraction
- pp: no UE subtraction for jet energy determination

Inclusive Jet Selection

- p_⊤ > 120 GeV
- |η| < 1.6
- May include multiple jets from one event

Tracks

Track Reconstruction:

- PbPb: heavy ion reconstruction,
 p_⊤ > 0.4 GeV
- pp: pp reconstruction,
 p_⊤ > 0.2 GeV
- Corrected for efficiency etc. as a function of η, φ, p_T, and centrality

Track Selection:

- 0.7 < p_T < 300 GeV
- |η| < 2.4

isolated photon + jets

- Finite jet and track acceptances result in trapezoidal geometry
- Correct for this pair acceptance effect with a mixed-event correction:
 - Jets from sample
 - Tracks from a minimum-bias event matched on centrality and v_z

isolated photon + jets

- Project background (measured on 1.5<|Δη|<2.5) into Δφ
- Propagate this background distribution in 2D
- Subtract from background from signal to yield isolated jet peak

Finally: apply two MC-based corrections for jet reconstruction biases

Dijet shapes in 2.76 TeV

PLB: Inclusive jets, pT > 120 GeV

Inclusive jet shapes

pp jet shapes are significantly broader and softer at 5.02 TeV

- 2.76 TeV Leading Jets: 64.0% Quark Jets, 33.4% Gluon Jets
- 5.02 TeV Inclusive Jets: 47.4 % Quark Jets, 47.6% Gluon Jets

In modification measurements:

- PbPb pp differences are similar at 5.02 and 2.76 TeV
- Difference in jet shape ratio can be accounted for by differences in pp reference jet shape

8.0