PHENIX Measurements of Beam Energy Dependence of Direct Photon Emission

Axel Drees, Hard Probes 2018, October, Aix-Les-Bains, France

- Introduction
- The Thermal Photon Puzzle
- New Results: Universal Scaling
- Outlook and Summary

HARD PROBES 2018

Stony Brook University
Thermal Photon Emission from a Heavy Ion Collisions

Relativistic Heavy-Ion Collisions

T=300-170 MeV

T=170-110 MeV
Experimental Issue: Isolate Thermal Radiation

\[\gamma, \gamma^* \text{ from A+A} \]

Direct

Non-thermal

Thermal

Pre-equilibrium

“Prompt” hard scattering

Quark-Gluon Plasma

Hadron Gas

Hadron Decays

\[\pi^0 \rightarrow \gamma \gamma \]

\[\eta \rightarrow \gamma \gamma \]

Need to subtract decay and prompt contributions with high accuracy

Stony Brook University
Photon Measurements with PHENIX

e^+e^- identification
E/p and RICH

Photons, neutral pion
$\gamma, \pi^0 \rightarrow \gamma \gamma$
Calorimeter

Photons
$\gamma \rightarrow e^+e^-$
$\lim_{m_{ee} \rightarrow 0} (\gamma^* \rightarrow e^+e^-)$

magnetic field & tracking detectors
Direct Photons p+p and Au+Au at $\sqrt{s_{NN}} = 200$ GeV

Direct photon yield well established
- pp consistent with pQCD
- AuAu follows N_{coll} scaled
- pp above 3-4 GeV
- Significant excess below 3 GeV in AuAu
- Excess has nearly exponential shape with $T_{eff} \sim 240$ MeV

First thermal photon measurement: $T_{ini} > 240$ MeV > T_c

(Need to consider exploding source!)
Anisotropic Emission of Direct Photons

Anisotropic emission of direct photon with large v_2 and v_3
Many model calculations and consideration*:

- More traditional, large contribution from hadron gas
 - Thermal rate in QGP & HG, with hydro (viscous/non viscous) or blastwave evolution
 - Microscopic transport (PHSD)

- New early contributions
 - Non-equilibrium effects (glasma, etc.)
 - Enhanced thermal emission in large B-fields
 - Modified formation time and initial conditions

- New effects at phase boundary
 - Extended emission
 - Emission at hadronization

*list not complete
New Insight: Vary System Size and Geometry

- Vary size & geometry through changing collision system, \sqrt{s}, centrality
- Measure system size via event multiplicity or $\frac{dN_{ch}}{d\eta}$ or similar
 - $\frac{dN_{ch}}{d\eta}$ is an experimental observable
 - at fixed \sqrt{s} $\frac{dN_{ch}}{d\eta} \sim N_{part} \sim$ Volume
 - Varying \sqrt{s} $\frac{dN_{ch}}{d\eta} \sim$ energy density x Volume
- Available for direct γ analysis in PHENIX
 - 200 GeV: Au+Au, Cu+Au, Cu+Cu, 3He+Au, d+Au, p+Au, p+p
 - 200 – 62.4 – 39 GeV: Au+Au

Axel Drees

Stony Brook University
New Experimental Data from Different Systems

- **New PHENIX data**
 - Vary collision energy: Au+Au at 39 and 62.4 GeV
 - Vary system size: Cu+Cu at 200 GeV
 - Small systems p+Au at 200 GeV (N.Novitzky’s talk)

Low p_T direct photons in all systems
Compare System Size for Different \sqrt{s}

- Characterize system size with multiplicity density:
 \[
 \frac{dN_{ch}}{d\eta}
 \]

- Compare system size and number of collisions: Empirical scaling relation across \sqrt{s}:
 - Connects system size and hard scattering

\[
N_{coll} = \frac{1}{SY(\sqrt{s_{NN}})} \times \left(\frac{dN_{ch}}{d\eta} \right)^\alpha
\]

$\alpha \approx 5/4$

PHENIX: arXiv:1804.04181

What is the origin of this scaling?
Comparison of Different Collision Systems

\[\frac{d^2N}{dp_T^2 dy} = (dN_{ch}/dn)_{ch}^{1.25} \]

\[\frac{dN_{ch}}{dn} \]

Similar low \(p_T \) photon yield when scaled with \(\frac{dN_{ch}}{dn}^{5/4} \) independent of energy, centrality, or system size

PHENIX: arXiv:1804.04181
Integrated Low p_T Photon Yield

PHENIX: arXiv:1804.04181

Universal scaling behavior!
Source of photons must be similar!

N_{coll} x pQCD and N_{coll} x p+p follow same scaling at 0.1 of yield
Integrated Photon Yield $p_T > 5$ GeV/c

PHENIX: arXiv:1804.04181

$A+A/p+p \rightarrow \gamma_{\text{dir}} + X$

- $\text{Pb+Pb}, \sqrt{s_{NN}} = 2760$ GeV
- $\text{Au+Au}, \sqrt{s_{NN}} = 200$ GeV
- $p+p, \sqrt{s} = 200$ GeV
- $p+p, \sqrt{s} = 62.4$ GeV

$\alpha = 1.25$

Au+Au at 200 GeV
consistent with $N_{coll} \times p+p$ and $N_{coll} + pQCD$

Pb+Pb
same scaling but 30% above $N_{coll} \times pQCD$ p+p

Stony Brook University

Axel Drees

NA38/NA50 Dimuon Enhancement

- Intermediate mass dimuon enhancement
 - Discovered by NA38/NA50
 - Originally interpreted as charm enhancement
 - Established as thermal dimuons from QGP by NA60 using vertex detectors

Graphical Data

- NA50 Pb-Pb 158 GeV
- Central collisions

Enhancement of open charm

- E : Enhancement of open charm

Graph

- Data points for various centrality classes and collision energies.
The NA38/NA50 dimuon enhancement is a significant result in high-energy physics. It was discovered by NA38/NA50 and originally interpreted as a charm enhancement. However, it was later established as a thermal dimuons from the quark-gluon plasma (QGP) by NA60 using vertex detectors.

Intermediate mass dimuon enhancement
- Discovered by NA38/NA50
- Originally interpreted as charm enhancement
- Established as thermal dimuons from QGP by NA60 using vertex detectors

NA38/NA50 Dimuon Enhancement

E : Enhancement of open charm

The NA35/NA50 dimuon excess is consistent with $N_{\text{part}}^{1.25}$ scaling.
Integrated Low p_T Photon Yield

$\gamma_{dir} + X$

- $A+A/p+p \rightarrow \gamma_{dir} + X$
- $\text{Pb+Pb}, \sqrt{s_{NN}} = 2760 \text{ GeV}$
- $\text{Au+Au}, \sqrt{s_{NN}} = 200 \text{ GeV}$
- $\text{Au+Au}, \sqrt{s_{NN}} = 62.4 \text{ GeV}$
- $\text{Au+Au}, \sqrt{s_{NN}} = 39 \text{ GeV}$
- $\text{Cu+Cu}, \sqrt{s_{NN}} = 200 \text{ GeV}$
- $p+p, \sqrt{s} = 200 \text{ GeV}$

N_{coll} scaled prompt photons

- $p+p$ fit, $\sqrt{s} = 200 \text{ GeV}$
- $pQCD$, $\sqrt{s} = 2760 \text{ GeV}$
- $pQCD$, $\sqrt{s} = 200 \text{ GeV}$
- $pQCD$, $\sqrt{s} = 62 \text{ GeV}$

PHENIX: arXiv:1804.04181
First Results From p/d-Au Collisions

Onset of low p_T excess radiation at $\frac{dN_{ch}}{d\eta} \sim 10$?
Outlook

- **Small system data sets**
 - p-Au, 3He-Au, d-Au
 - “engineer” collision geometry
 - Search for onset of QGP

- **High statistics large systems**
 - Au-Au, Cu-Au
 - More precise measurements
 - New insights into thermal photon puzzle

More results for PHENIX yet to come
Summary

- Thermal photon puzzle in Au+Au at 200 GeV unresolved
 - Large photon yield
 - Large azimuthal anisotropy
 - Difficult for theoretical models to reconcile

- PHENIX discovered universal scaling of low p_T direct γ yield with $\frac{dN_{ch}}{d\eta}^{5/4}$
 - Independent of centrality and \sqrt{s} from 39 GeV to 2760 GeV beam energy
 - Holds down to system size of $\frac{dN_{ch}}{d\eta} \sim 20$
 - At fixed \sqrt{s} equivalent to N_{coll} scaling at low p_T and high p_T
 - Scaled A+A yield is a factor of 10 larger than expected from p+p

- PHENIX data from p+A and d+Au
 - Indicates rapid transition onset of direct photon excess around $\frac{dN_{ch}}{d\eta} \sim 5$ to 20

- More PHENIX data varying size and geometry to be finalized/analyzed
 - Small systems: p+Au, d+Au, 3He+Au
 - Large systems: Au+Au and Cu+Au
Backup
Thermal Radiation from Hot & Dense Matter

Black Body Radiation
- Real or virtual photons
- Sensitive to temperature & density
 - Boltzmann dist. with avg. inv. slope $\propto T$,
 - Photon flux $\propto T^4$
- Space-time evolution of matter
 - matter expands
 - \Rightarrow temperature drops
 - \Rightarrow Doppler shift

Microscopic view of thermal radiation

QGP:

hadron gas:

Emission rate depends on density squared integrated over space-time evolution

High yield \Rightarrow high T \Rightarrow early emission
Large Doppler shift \Rightarrow late emission
Different pQCD calculations in good agreement
STAR Au+Au 200 GeV PHENIX Au+Au 200 GeV

\[\sqrt{s_{NN}} = 200 \text{ GeV}: \]
- Au+Au, 0-20%
- Au+Au, 20-40%
- Au+Au, 40-60%
- Au+Au, 60-80%
- p+p, \sqrt{s} = 200 \text{ GeV}
- p+p fit, \sqrt{s} = 200 \text{ GeV}
- pQCD, \sqrt{s} = 200 \text{ GeV}

\[\sqrt{s_{NN}} = 200 \text{ GeV}: \]
- Au+Au, 0-20%
- Au+Au, 20-40%
- Au+Au, 40-60%
- \text{p+p, } \sqrt{s} = 200 \text{ GeV}
- \text{p+p fit, } \sqrt{s} = 200 \text{ GeV}
- \text{pQCD, } \sqrt{s} = 200 \text{ GeV}

\[\text{Pb+Pb, } \sqrt{s_{NN}} = 2760 \text{ GeV, 0-20%}: \]
- Au+Au, \sqrt{s_{NN}} = 200 \text{ GeV, 0-20%}
- Au+Au, \sqrt{s_{NN}} = 62.4 \text{ GeV, 0-20%}
- Cu+Cu, \sqrt{s_{NN}} = 200 \text{ GeV, 0-40%}
- \text{pQCD, } \sqrt{s} = 2760 \text{ GeV}
- \text{pQCD, } \sqrt{s} = 200 \text{ GeV}

\[\text{pQCD, } \sqrt{s} = 200 \text{ GeV} \]

STAR Au+Au direct photons close to p+p considering assumed } \eta \text{ yield lower than used by PHENIX
Comparing STAR and PHNEIX

\[A+A/p+p \rightarrow \gamma_{\text{dir}} + X \]

- Pb+Pb, \(\sqrt{s_{\text{NN}}} = 2760 \text{ GeV} \)
- Au+Au, \(\sqrt{s_{\text{NN}}} = 200 \text{ GeV} \)
- Au+Au, \(\sqrt{s_{\text{NN}}} = 62.4 \text{ GeV} \)
- Au+Au, \(\sqrt{s_{\text{NN}}} = 39 \text{ GeV} \)
- Cu+Cu, \(\sqrt{s_{\text{NN}}} = 200 \text{ GeV} \)
- p+p, \(\sqrt{s} = 200 \text{ GeV} \)
- Au+Au, \(\sqrt{s_{\text{NN}}} = 200 \text{ GeV} \) (STAR)

\[N_{\text{coll}} \text{ scaled prompt photons} \]

- p+p fit, \(\sqrt{s_{\text{NN}}} = 200 \text{ GeV} \)
- pQCD, \(\sqrt{s_{\text{NN}}} = 2760 \text{ GeV} \)
- pQCD, \(\sqrt{s_{\text{NN}}} = 200 \text{ GeV} \)
- pQCD, \(\sqrt{s_{\text{NN}}} = 62.4 \text{ GeV} \)