

Open-heavy-flavour production and elliptic flow in p-Pb collisions at the LHC with ALICE

Cristina Terrevoli for the ALICE Collaboration University of Houston

30 September 2018 - 5 October 2018 Aix-Les-Bains

1

Open heavy flavour in p-Pb collisions

Heavy quarks effective probes of the Quark-Gluon Plasma in Pb-Pb collisions

Interpretation of Pb-Pb measurements

- → understanding of cold nuclear matter (CNM) effects in initial and final state
- constrain them by studying p-Pb collisions

Open heavy flavour in p-Pb collisions

Heavy quarks effective probes of the Quark-Gluon Plasma in Pb-Pb collisions

Interpretation of Pb-Pb measurements

- → understanding of cold nuclear matter (CNM) effects in initial and final state
- constrain them by studying p-Pb collisions

p-Pb collisions not only reference for CNM effects:

in high multiplicity p-Pb collisions, effects typically observed in A-A collisions

ex. in the light flavour sector: long-range v_2 -like angular correlations, enhancement of baryon production

Open heavy flavour in p-Pb collisions

Heavy quarks effective probes of the Quark-Gluon Plasma in Pb-Pb collisions

Interpretation of Pb-Pb measurements

- → understanding of cold nuclear matter (CNM) effects in initial and final state
- constrain them by studying p-Pb collisions

p-Pb collisions not only reference for CNM effects:

in high multiplicity p-Pb collisions, effects typically observed in A-A collisions

ex. in the light flavour sector: long-range v_2 -like angular correlations, enhancement of baryon production

Open heavy-flavour reconstruction in ALICE

Nuclear modifications in p-Pb collisions

Nuclear Modification Factor: D-meson R_{pPb}

Nuclear Modification Factor: D-meson, Λ_c R_{pPb}

C.Terrevoli

Nuclear Modification Factor: D-meson *R*_{pPb} **vs models**

- Models including CNM effects only are compatible with data
 - a model including incoherent multiple scattering describes data within uncertainties for *p*_T> 5 GeV/*c*

Nuclear Modification Factor: D-meson *R*_{pPb} **vs models**

- Models including CNM effects only areModels iscompatible with datacollisions
- a model including incoherent multiple scattering describes data within uncertainties for p_T> 5 GeV/c

Models including **QGP formation** in p-Pb collisions can describe data up to $p_T \sim 6 \text{ GeV}/c$

Data do not favour a suppression larger than 10-15% for $5 < p_T < 12 \text{ GeV}/c$

Nuclear Modification Factor: R_{pPb} vs R_{AA}

Pb-Pb results: F.Grosa's Talk

Suppression observed at intermediate-high $p_{\rm T}$ in Pb-Pb collisions is due to final-state effects

C.Terrevoli

Heavy-flavour hadron decay electron R_{pPb}

Heavy-flavour hadron decay electron (HF-e) R_{pPb} compatible with unity

Nuclear modification factor in centrality classes: Q_{pPb}

Nuclear modification factor in centrality classes: Q_{cp}

Charm-hadron ratios in small systems

Charm-hadron ratios

Relative abundances of D*+/D⁰ and D_s+/D⁰ compatible in pp and p-Pb collisions
and also consistent with measurements in e⁺e⁻ collisions at LEP Gladilin, EPJ C75 (2015) 19

Hint of a enhanced production of D_s w.r.t. non-strange D meson (D^o) in Pb-Pb collisions

Charm-hadron ratio: strange/no-strange

D_s/D⁺ measured as a function of multiplicity in different p_T ranges

- compatible ratios in pp and p-Pb collisions
- no dependency vs multiplicity with the current uncertainties

collectivity in high-multiplicity p-Pb collisions?

HFe-hadron azimuthal correlations

C.Terrevoli

HF production in p-Pb with ALICE

HF-decay lepton v₂ in p-Pb

*v*₂: second-order coefficient of the Fourier expansion of the azimuthal distributions of particles

ALI-PUB-310817

- HF-e v₂>0 in 1.5<p_T<4 GeV/c in high multiplicity events with significance > 5 σ
- sizeable effect, possibly lower than charged-particles maximum, and similar to inclusive muons at large rapidities

HF-decay lepton v₂ in p-Pb

v₂: second-order coefficient of the Fourier expansion of the azimuthal distributions of particles

- NEW! μv_2 measured in different collision energy $\sqrt{s_{NN}} = 8.16$ TeV, in an extended p_T range
 - where HF-μ components dominate
- Analysis Strategy: Q-cumulants with 2-particle correlations
- 0-10% high-multiplicity class: CL1, N_{tracklets} = # track segments in the two innermost layers of the ITS
- similar values at forward and backward rapidities
- μ v₂>0 in 2<p_T<6 GeV/c in high multiplicity events with significance > 3 σ

compatible with HF-e and inclusive μ in p-Pb collisions at 5.02 TeV

- *R*_{pPb} of heavy-flavour hadrons compatible with unity and described by models including CNM effects
- Measured D-meson R_{pPb} at high p_T disfavours QGP models that predict a significant suppression at high p_T in p-Pb collisions
 - suppression in Pb-Pb collisions at intermediate pT is due to final-state effects
- Investigation of high-multiplicity p-Pb collisions:
 - D-meson *Q*_{pPb} compatible with unity
 - Hint of D-meson $Q_{CP} > 1$ at low-intermediate p_T
 - No modification in the ratios of strange/non-strange mesons in different systems and vs multiplicity
 - Non-zero v₂ for HF-decay leptons in high multiplicity events

- *R*_{pPb} of heavy-flavour hadrons compatible with unity and described by models including CNM effects
- Measured D-meson R_{pPb} at high p_T disfavours QGP models that predict a significant suppression at high p_T in p-Pb collisions
 - suppression in Pb-Pb collisions at intermediate p_T is due to final-state effects

Investigation of high-multiplicity p-Pb collisions:

- D-meson *Q*_{pPb} compatible with unity
- Hint of D-meson $Q_{CP} > 1$ at low-intermediate p_T
- No modification in the ratios of strange/non-strange mesons in different systems and vs multiplicity
- Non-zero v_2 for HF-decay leptons in high multiplicity events

- Measured D-meson R_{pPb} at high p_T disfavours QGP models that predict a significant suppression at high p_T in p-Pb collisions
 - suppression in Pb-Pb collisions at intermediate p_T is due to final-state effects
- Investigation of high-multiplicity p-Pb collisions:
 - D-meson *Q*_{pPb} compatible with unity
 - Hint of D-meson $Q_{CP} > 1$ at low-intermediate p_T
 - No modification in the ratios of strange/non-strange mesons in different systems and vs multiplicity
 - Non-zero v_2 for HF-decay leptons in high multiplicity events

- *R*_{pPb} of heavy-flavour hadrons compatible with unity and described by models including CNM effects
- Measured D-meson R_{pPb} at high p_T disfavours QGP models that predict a significant suppression at high p_T in p-Pb collisions
 - suppression in Pb-Pb collisions at intermediate p_T is due to final-state effects

Investigation of high-multiplicity p-Pb collisions:

- D-meson *Q*_{pPb} compatible with unity
- Hint of D-meson $Q_{CP} > 1$ at low-intermediate p_T
- No modification in the ratios of strange/non-strange mesons in different systems and vs multiplicity
- Non-zero v₂ for HF-decay leptons in high multiplicity events

Charm Baryons-to-meson ratios in E. Meninno's Talk

- Measured D-meson R_{pPb} at high p_T disfavours QGP models that predict a significant suppression at high p_T in p-Pb collisions
 - suppression in Pb-Pb collisions at intermediate p_T is due to final-state effects
- Investigation of high-multiplicity p-Pb collisions:
 - D-meson *Q*_{pPb} compatible with unity
 - Hint of D-meson $Q_{CP} > 1$ at low-intermediate p_T
 - No modification in the ratios of strange/non-strange modifierent systems and vs multiplicity
 - Non-zero v₂ for HF-decay leptons in high multiplicity e¹

• *R*_{pPb} of heavy-flavour hadrons compatible with unity and described by models including CNM effects

- Measured D-meson R_{pPb} at high p_T disfavours QGP models that predict a significant suppression at high p_T in p-Pb collisions
 - suppression in Pb-Pb collisions at intermediate p_T is due to final-state effects

Investigation of high-multiplicity p-Pb collisions:

- D-meson *Q*_{pPb} compatible with unity
- Hint of D-meson $Q_{CP} > 1$ at low-intermediate p_T
- No modification in the ratios of strange/non-strange mesons in different systems and vs multiplicity
- Non-zero v_2 for HF-decay leptons in high multiplicity events

*R*_{pPb} of heavy-flavour hadrons compatible with unity and described by models including CNM effects

- Measured D-meson R_{pPb} at high p_T disfavours QGP models that predict a significant suppression at high p_T in p-Pb collisions
 - suppression in Pb-Pb collisions at intermediate p_T is due to final-state effects

Investigation of high-multiplicity p-Pb collisions:

- D-meson *Q*_{pPb} compatible with unity
- Hint of D-meson $Q_{CP} > 1$ at low-intermediate p_T
- No modification in the ratios of strange/non-strange mesons in different systems and vs multiplicity
- Non-zero v₂ for HF-decay leptons in high multiplicity events

Collective effects in p-Pb: origin? Initial- or final-state effects

- Investigation of high-multiplicity p-Pb collisions:
 - D-meson Q_{pPb} compatible with unity

to final-state effects

- Hint of D-meson $Q_{CP} > 1$ at low-intermediate p_T
- No modification in the ratios of strange/non-strange mesons in different systems and vs multiplicity
- Non-zero v_2 for HF-decay leptons in high multiplicity events

Collective effects in p-Pb: origin? Initial- or final-state effects?

- More in HF-jets, D-h correlation results in p-Pb S. Aiola Talk **Upgrades of ALICE** in LHC Run 3-4
 - improved precision and extended p_{T} reach for HF measurements

collisions

backup

Data Samples

```
p-Pb collisions, data samples:
```

```
Min. bias \sqrt{s_{NN}} = 5.02 \text{ TeV min.bias}
Run1 2013 100 M L<sub>int</sub>= 47.8 µb<sup>-1</sup>
Run2 2016 600 M L<sub>int</sub>= 292 µb<sup>-1</sup>
```

```
electrons (2016) √s<sub>NN</sub> =8.16 TeV min. bias
Trig.1(p<sub>T</sub>>10 GeV/c) L<sub>int</sub> = 599 μb-1
```

```
Trig.2 (p<sub>T</sub>>5 GeV/c) L<sub>int</sub> = 34.6 μb-1
```

```
≈20M MB events L_{int} = 10.1 \ \mu b^{-1}
```

```
Muons (2013) \sqrt{s_{NN}} =5.02 TeV min. bias
```

```
Trigger MSL (p_T > 0.5 \text{ GeV}/c) p-Pb L<sub>int</sub> = 196 µb<sup>-1</sup>, Pb-p L<sub>int</sub> = 254 µb<sup>-1</sup>
```

```
Trigger MSH (p_T > 4.2 \text{ GeV}/c) p-Pb Lint = 4.9 \cdot 10^3 \mu b^{-1}, Pb-p Lint = 5.8 \cdot 10^3 \mu b^{-1}
```

```
Muons (2016) \sqrt{s_{NN}} =8.16 TeV min. bias
```

```
Trigger MSL (p_T > 0.5 \text{ GeV}/c) p-Pb Lint = 22 M, Pb-p Lint = 3.4M
```

```
Trigger MSH (p_T > 4.2 \text{ GeV}/c) p-Pb L<sub>int</sub> = 17M , Pb-p L<sub>int</sub> = 34M
```

Heavy-flavour hadron decay lepton R_{pPb}

C.Terrevoli

charm hadrons: Family Portrait in p-Pb and Pb-Pb

Azimuthal Flow

In Pb-Pb

- Signature of collective motion in heavy-ion collisions, due to presence of QGP
- Provide experimental information on the equation of state and the transport properties of the created QGP

Initial spatial anisotropy of peripheral collisions

- "almond shaped" of the overlap region:
 - larger pressure gradient in x-z plane than in y direction
 - particle re-scattering: convert the initial spatial anisotropy into a momentum anisotropy

Observable: elliptic flow v2

Second coefficient of the Fourier expansion of the azimuthal distributions of particles

$$\frac{\mathrm{d}N}{\mathrm{d}\varphi} \propto 1 + 2 \sum_{n=1}^{+\infty} v_n \cos[n(\varphi - \psi_n)]$$

low p_{T} : multiple interactions between partons (collectivity)

positive v_2 for HF hadrons —> charm participates to the collective effects in the QGP

D-hadron and e-hadron azimuthal correlations

S ALICE

Azimuthal correlations of D mesons and HF decay electrons with charged particles: $\Delta \varphi = \varphi_{e/D} - \varphi_{ch}$ distributions access charm fragmentation and jet properties

investigating the high multiplicity p-Pb collisions

D-h correlation in minimum bias

- No evidence of modification of charm quark production and fragmentation in different collisions systems.
- references for future Pb-Pb measurements

hint of a enhanced of near and away side peaks distribution in central 0-20% p-Pb collisions than in 60-100%

Away

side

Near

side

meson

muon V₂

- Non-flow subtracted: few particle correlations not associated to the common symmetry plane
 Correlations between particles in jets, or from resonance decays, etc.
- Non-flow subtraction: estimated in pp at 13 TeV

$$v_2^{pPb,sub}(p_T) = \frac{d_2^{pPb}(p_T) - k \cdot d_2^{pp}(p_T)}{\sqrt{c_2^{pPb} - k \cdot c_2^{pp}}} \qquad k = \frac{\langle M \rangle^{pp}(0 - 100\%)}{\langle M \rangle^{pPb}(cent)}$$

Non-Uniform-Acceptance corrections

muon v₂

ALICE

ATLAS

https://cds.cern.ch/record/2244808

muon v₂ azimuthal correlation with charged particles and muons

 $|\eta| < 2.5$

Charm hadron ratio: strange/no-strange

investigating the high multiplicity pp and p-Pb collisions

 $\rm D_s/\rm D^+$ measured as a function of multiplicity in different $p_{\rm T}$ ranges

- ratios compatible in pp and p-Pb collisions
- no dependency with the current uncertainties

Charm hadron ratio: strange/no-strange

investigating the high multiplicity pp and p-Pb collisions

 $\rm D_s/\rm D^+$ measured as a function of multiplicity in different $p_{\rm T}$ ranges

- ratios compatible in pp and p-Pb collisions
- no dependency with the current uncertainties

New pp reference: better precision at low pt

HF hadron v₂ in Pb-Pb

R_{pPb} models

- CGC: arXiv:1706.06728
- FONLL (JHEP 1210 (2012) 137, arXiv:1205.6344) with EPPS16 nPDFs (Eur. Phys. J. C77 no. 3, (2017) 163, arXiv:1612.05741).
- Vitev et al: Phys.Rev. C80 (2009) 054902, arXiv: 0904.0032.
- Kang et al.: Phys. Lett. B740 (2015) 23–29, arXiv: 1409.2494.
- Duke: Nucl. xPart. Phys. Proc. 276-278 (2016) 225–228, arXiv:1510.07520.
- **POWLANG**: JHEP 03 (2016) 123, arXiv: 1512.05186.
- FONLL (JHEP 1210 (2012) 137, arXiv:1205.6344
 [hep- ph]) with EPS09NLO (JHEP 04 (2009) 065, arXiv:0902.4154)
- Blast wave calculation: Phys. Lett. B 728 (2014)
 25, arXiv:1307.6796
- Sharma et al: Phys. Rev. C 80 (2009) 054902, arXiv:0904.0032

C.Terrevoli