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Motivation
Want to understand the relative behaviour 
of jet and hadron suppression:
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dependence on jet radius?

notably less suppression 
for hadrons than jets (at any energy)

how to understand this behaviour?

JHEP 1704 (2017) 039

Hadron 
suppression

Jet suppression

Build a consistent picture 
by confronting hypothesis 
to other observables

ATLAS, arXiv:1805.05635



Hybrid strong/weak coupling approach
High energy jet starts with a high virtuality, 
much greater than medium scale

Parton shower well approximated by 
vacuum-like splittings (late stages?)

Use non-perturbative holographic prescription 
for partonic energy loss

Energy flowing into hydro modes:

Estimate the hadronic spectra coming from medium response 
(assume small perturbation, instantaneous hydrodynamization)

Lost jet energy converted into soft particles at large angles (corr. bkgd.)

Pablos et al. - JHEP ‘14, ‘16, ’17, ‘18

O(1)

Plasma-jet interaction dominated by temperature scale

free parameter
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Chesler & Rajagopal - PRD ‘15, JHEP ‘16



Constraining the free parameter
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PDFs: CTEQ6L1 (pp) & CTEQ6L1+EPS09 (AA)
Jet Production: PYTHIA 8.230 (kinematics) & MC Glauber (trans. position)
Jet Branching: PYTHIA 8.230. Space-time picture through      argument
Hydro Profile: smooth profiles from C. Shen

Jet Hadronization: Lund string model from PYTHIA (pp & AA)

Goodness of Fit Test

ATLAS and CMS, jet & hadron (pT > 10 GeV) most central data

Find best      

Consider different error nature (stat., syst. uncorr., syst. corr., norm.)
(following PHENIX PRC 08
arXiv:0801.1665)

⌧F

Energy Loss: apply holographic dE/dx in between splittings

Medium Response: Perturbed Cooper-Frye, 4-mom. cons. with Metropolis

PHENIX, hadron (pT > 5 GeV) most central data
Data

�2

Pablos et al. - arXiv:1808.07386
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Fit results
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*

* with LHC data only
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Consistent, but 
some tension between
hadrons & jets
preferred value

adapted from Pablos et al. - arXiv:1808.07386



Fit results
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Consistent, but 
some tension between
hadrons & jets
preferred valueFinite resolution effects 

(a.k.a. coherence in pQCD)
affect hadron & jet relative suppression

(see back-up &                                                   )

Hadrons 0-5%

Y. Mehtar-Tani’s talk on Tuesday

adapted from Pablos et al. - arXiv:1808.07386



Hadron and Jet suppression
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Connection between hadrons and jets

8Daniel Pablos McGill / JETSCAPE

0

0.2

0.4

0.6

0.8

1

1.2

1.4

10 100 1000

R
A
A

Hadron or Jet pT [GeV]

Hadrons
Jets R = 0.4

jet fragments 
distributions (FFs)High z 

enhancement

Count the average number of hadrons,
per jet, with energy fraction z

ATLAS
Phys. Rev. C 98, 024908 (2018)

adapted from Pablos et al. - arXiv:1808.07386



Connection between hadrons and jets
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Connection between hadrons and jets
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Vacuum jet FFs
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Jet narrowing
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Wider, more active jets lose more energy than narrower, hard fragmenting ones

Steeply falling jet spectrum bias inclusive jet sample to narrower ones,
explains high z enhancement

High pT hadrons belong to such subsample 

of narrow jets, which get less quenched, 

and so Rjet
AARhad

AA > RR

�E
narrow

< �E
wide

Effect seen in the literature, for different models,
on different observables - see for instance:

Milhano & Zapp - EPJ ‘16Brewer et al. - JHEP ‘18 Pablos et al. - JHEP ‘17

see W. van der Schee’s talk on Tuesday
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RAA vsR
adapted from Pablos et al. - JHEP ‘16
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RAA vsR

Characteristic behaviour of strong coupling: efficient energy transfer into hydro modes
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Upcoming precise data from CMS
Stay tuned!

see J. Mulligan’s talk on Wednesday

adapted from Pablos et al. - JHEP ‘16



28

New substructure observables

Grooming techniques:

Measured
anti-kT jet

Soft Drop condition:

Analytically well understood observable: strongly relates to QCD splitting function.

Provides momentum balance between the two groomed subjets.

pT1

pT2

R12

R0

Remove 
large angle & soft:
zcut = 0.1

� = 0

Taken from M. Verweij’s
slides @ MIT HI workshop ‘16

Larkoski et al. - JHEP ‘14, PRD ‘15 

Daniel Pablos McGill / JETSCAPE



29

Recursive Splittings
Count the number of times that the same jet satisfies the Soft Drop condition

No enhancement in the # splittings
passing Soft Drop in medium.

Suppression of wide structures 
tends to slightly reduce nSD.

In preparation

H. Andrew’s talk 
(ALICE) in QM ‘18

Daniel Pablos McGill / JETSCAPE
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Momentum sharing distribution

Embedding can have non-trivial
effect in ratio, since jets in
numerator narrower than denominator.

�R ⌘ R12

Shape of the distribution not modified
because our model assumes 
vacuum-like shower.

In preparation
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Momentum sharing distribution
�R ⌘ R12In preparation
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not embedded yet
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Momentum sharing distribution
�R ⌘ R12In preparation
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not embedded yet

Wide structure suppression 
modifies probability of finding 
subjet at large angles w.r.t. pp.

Embedding can have non-trivial
effect in ratio, since jets in
numerator narrower than denominator.

Data from H. Andrew’s talk 
(ALICE) in QM ‘18
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Lund map
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Suppression

Enhancement

Fill a 2D density map by using both
momentum balance (zg) 
and angular separation (ΔR).

PbPb� pp

A suppression of large angle splittings and 
enhancement of collinear splittings is observed - 
consistent with observation in zg measurement. 

In qualitative agreement
with the Hybrid Model

H. Andrew’s talk (ALICE) in QM ‘18

Daniel Pablos McGill / JETSCAPE

see M. Verweij’s talk on Wednesday

not embedded yet
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Conclusions
the hybrid model can describe jet and hadron suppression simultaneously!

jet suppression fairly independent of jet radius due to competing effects

relative hadron vs. jet suppression manifest in high z region of jet FFs AA/pp ratio

new substructure observables are consistent with presented picture

tension between RHIC and LHC results suggesting need for larger coupling at RHIC

high z enhancement due to wider jets losing more energy than narrower ones

jet sample within a larger radius loses more energy, but can recover more lost energy 

# SoftDrop splittings, angular dependence of zg, Lund map
(need to account for bkgd. effects for a fair comparison)

v1.0 has been now released! https://github.com/JETSCAPE
Modular simulator of heavy ion collisions
Energy loss modules: MATTER, LBT, MARTINI, AdS/CFT
Will soon feature concurrent Jet+Hydro evolution!

Daniel Pablos McGill / JETSCAPE

https://github.com/JETSCAPE


Backup Slides
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An estimate of finite resolution effects
Weak coupling:

interplay between antenna angle, formation time and emission wavelength

medium interactions can destroy antenna color correlations
radiation from the global charge only if system not resolved by QGP

Strong coupling:

quark-gluon system emulated by string with kink

stopping distance modulated by angular separation between endpoint & kink

In Hybrid Model:

unresolved dipoles lose energy as a single effective excitation

two partons are resolved if their separation is greater than resolution length

Casalderrey & Ficnar - arXiv:1512.00371

Hulcher et al. - JHEP ‘18

Mehtar-Tani et al. - PLB ‘12

needs further study!

Casalderrey & Iancu - JHEP ‘11 Casalderrey et al. - PLB ‘13

Lres ⇠ �D

Daniel Pablos McGill / JETSCAPE36
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Fit results
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Extracted jet FFs
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ALICE Preliminary results on zg
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all ΔR

Not unfolded data:
need to smear theory results

H. Andrew’s talk (ALICE) in QM ‘18



Understanding groomed observables
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Understanding groomed observables
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Correlation between momentum balance & subjet angular separation

Separately normalised for each zg
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Understanding groomed observables
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Understanding groomed observables
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Rough independence of 
momentum balance w.r.t. nSD 

Suppression of wide structures Not necessarily modifies zg
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quenching back-reaction

cancellation between two effects

Charged jet mass

M =
q
E2 � p2T � p2z

jet narrowing
reduces jet mass

soft particles at edges
rapidly increase mass

In preparation
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Jet suppression: Photon-Jet events 

Core features of the model have been validated by e.g. photon-jet observables predictions

No strong evidence so far of hard point-like scatterers
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energy is recovered at large angles in the form of soft particles
data suggests that implementation of back-reaction might mistreat semi-hard particles
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Finite resolution effects @ strong coupling

Daniel Pablos McGill / JETSCAPE

smallest angular separation between two jets 
that the medium can resolve?

assign a transverse structure to the string
such that a quark-gluon system is emulated

holographic description of 3-jet events

study the stopping distances as a function of 
opening angle and energy

different scaling than pQCD in a dense plasma
✓pQCD
res / E�3/4

Casalderrey & Ficnar - arXiv:1512.00371
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Holographic quenching with pure strings

competing effects: each individual jet widens, while wider jets lose more energy

the string is treated as 
a model for the 
jet as a whole

consider ensemble of jets by choosing initial distributions of energy & angle from pQCD

effect also observed in pQCD

measures jet angle in pQCD

for the same jet suppression different final angle dist.

TSYM = b TQCD

49Daniel Pablos McGill / JETSCAPE

Rajagopal et al. - PRL ‘16

Milhano & Zapp - EPJ ‘16



Holographic quenching with pure strings

use pp jet shapes to 
determine angle distribution

nuclear jet shape modification captures 
core dynamics - lacks contribution 
from medium response

a 2 {1.8, 2.5}

as the string nullifies, different initial choices  
tend to converge

50Daniel Pablos McGill / JETSCAPE

determine string energy density by considering 
different initial profiles evolved 
within full string dynamics

Brewer et al. - JHEP ‘18



Proxies for HE jets

Daniel Pablos McGill / JETSCAPE

light quark endpoint can fall unimpeded towards the black brane

external boosted U(1) fields

semiclassical string description

Arnold & Vaman ‘11 

Chesler et al. ‘09 

sc / �0

robust result at strong coupling

zq ! 0
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Intra-jet broadening

Daniel Pablos McGill / JETSCAPE
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Subleading jets - semi-hard tracks

strong quenching suppresses the effect of broadening

early wide fragments quenched

late narrow fragments survive

selection bias towards narrower jets, 
merely a jet axis deflection

kinematical limits chosen such that: 
• no effect from background (soft tracks) 
• intra-jet activity above average (hard tracks)

deviations from such Gaussian broadening

hard momentum transfers from QGP quasiparticles
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