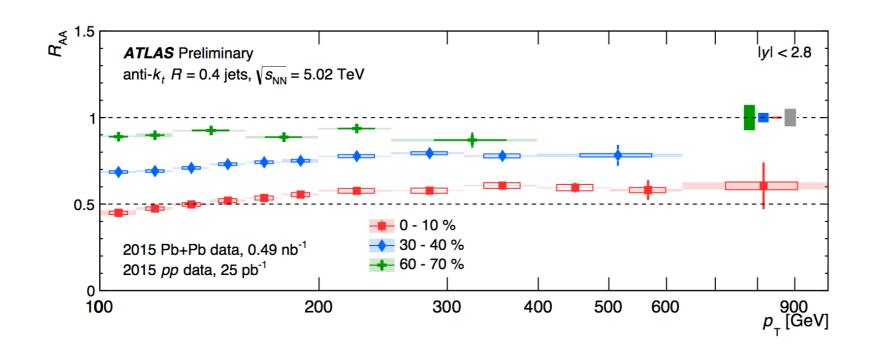


Higher order corrections to jet-quenching


Yacine Mehtar-Tani BNL

Hard Probes 2018 @ Aix-les-Bains, France October 1 - 6, 2018

Motivation

- How do jets, as multi-partonic systems, interact with a QCD medium?
- A lot of progress on the computational side. Several Monte Carlo event generators on the market: Hybrid model, JEWEL, LBT, CoLBT, MARTINI, Matter, Q-Pythia, (some already available on JetScape platform)
- Theoretical guidance at high pT? Understanding jet substructure, developing a probabilistic picture (including interferences)

What drives jet suppression

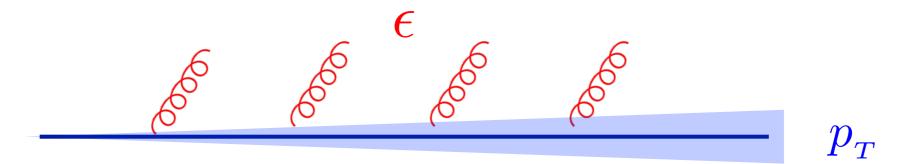
- Strong suppression of jets in PbPb collisions at the LHC (up to 1 TeV) → pertubative expansion breaks down: expect large power corrections at high pT
- Two competing effects: (relative) single parton energy loss decreases with pT while parton multiplicity increases

Motivation

 Amplification of jet quenching due to increasing multiplicity at high pT qualitatively accounted for in Monte Carlo event generators: JEWEL, MARTINI, Hybrid Model, etc

Dani Pablos' talk on Thursday

Milhano, Zapp EPJC 76 (2016) 288 Casalderrey et al. JHEP 1703 (2017) 135


 This talk: analyze the structure of higher order corrections (including interferences effects) to the inclusive jet spectrum → provide MC prescription

Work in collaboration with Konrad Tywoniuk

arXiv: 17017.07361 (PRD), arXiv:17017.06047 (NPA)

Single parton energy loss

 Standard analytic approaches to energy loss: medium-induced radiative energy loss of a single quark or gluon

 Jet spectrum: convolution of pp jet spectrum with energy loss probability distribution

$$\frac{\mathrm{d}\sigma(p_T)}{\mathrm{d}^2 p_T \mathrm{d}y} = \int_0^\infty \mathrm{d}\epsilon \, \mathcal{P}(\epsilon) \, \frac{\mathrm{d}\sigma^{\mathrm{vac}}(p_T + \epsilon)}{\mathrm{d}^2 p_T \mathrm{d}y}$$

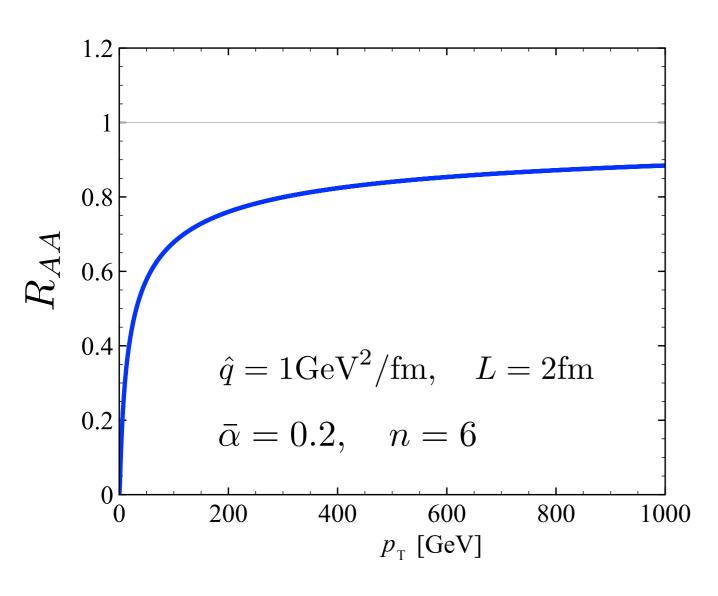
Single parton energy loss

 Due to the steep initial spectrum, energy loss biased towards small values (< mean energy loss)

$$\epsilon \sim \frac{p_T}{n} \ll \bar{\epsilon} \sim \bar{\alpha} \hat{q} L^2$$
 Baier, Dokshitzer, Mueller, Schiff, JHEP (2001)

• large n approximation (not necessary):
$$\frac{\mathrm{d}\sigma(p_T+\epsilon)}{\mathrm{d}^2p_T}\sim\frac{1}{(p_T+\epsilon)^n}=\frac{\mathrm{e}^{-\frac{n\epsilon}{p_T}}}{p_T^n}(1+\mathcal{O}(n\epsilon^2/p_T^2))$$

$$R_{\rm AA} \simeq Q(p_T) \equiv \int d\epsilon \, \mathcal{P}(\epsilon) \, \mathrm{e}^{-\frac{n\epsilon}{p_T}}$$


 In this limit multiple gluon radiation/scattering cannot be neglected (in contrast with single hard gluon radiation approx. HT, GLV, SCETg)

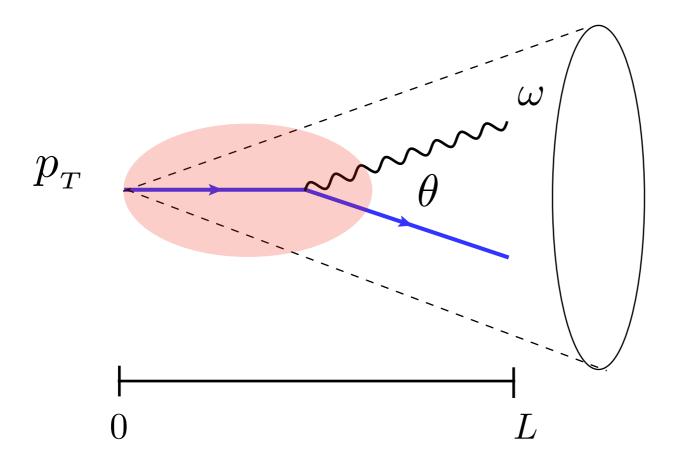
Jeon, Moore (2003), Blaizot, Dominguez, Iancu, MT (2013)

Single parton energy loss

 Illustration: neglecting finite size effects and medium geometry

$$R_{AA} \simeq \exp\left(-\bar{\alpha} L \sqrt{\frac{\pi \hat{q} n}{p_T}}\right)$$

Strong quenching

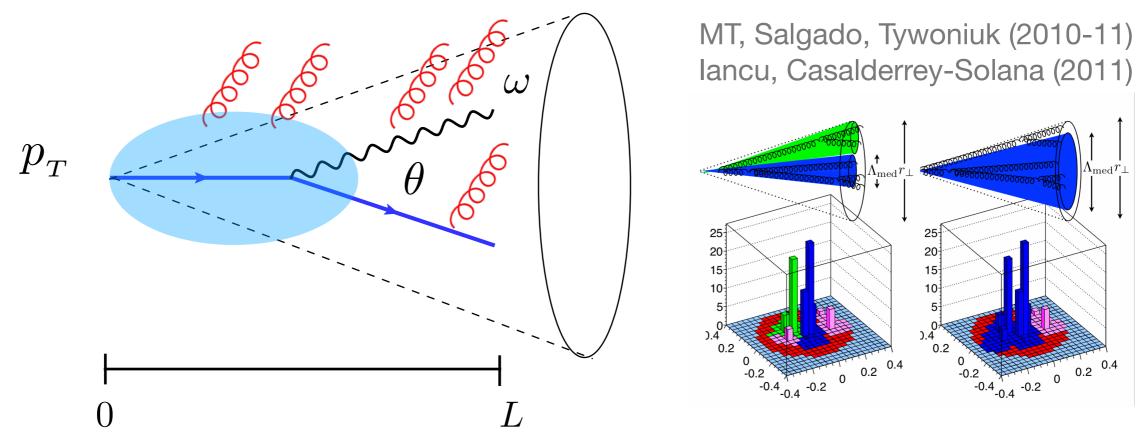

$$p_T \ll \pi \, n \, \bar{\alpha}^2 \hat{q} L^2$$

$$Q(p_T) \ll 1$$

Jet energy loss

Jet energy loss: phase-space analysis

How important are jet substructure fluctuations?


formation time

$$t_{
m f} \sim rac{1}{\omega heta^2}$$

$$PS = \bar{\alpha} \int_{0}^{p_{T}} \frac{d\omega}{\omega} \int_{0}^{R} \frac{d\theta}{\theta} \Theta(t_{f} > L) = \frac{\bar{\alpha}}{4} \ln^{2} \left(p_{T} R^{2} L \right) \gtrsim 1$$

Jet energy loss: phase-space analysis

Double logarithmic phase-space (from first principles):

Casalderrey-Solana, MT, Salgado, Tywoniuk (2012) Apolinario et al (2014) MT, Tywoniuk (2017)

 Additional time scale: the color decoherence time associated with the resolution of subjects by the medium

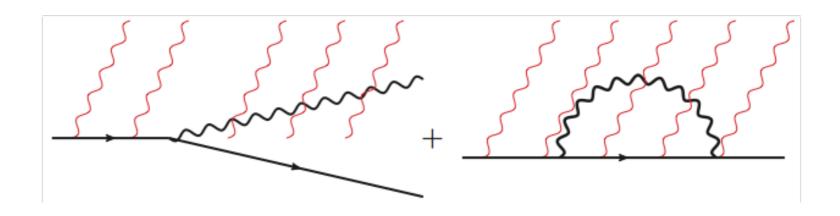
$$t_{\rm d} \sim (\hat{q} \, \theta^2)^{-1/3} < L$$

Jet energy loss: phase-space analysis

decoherent In-

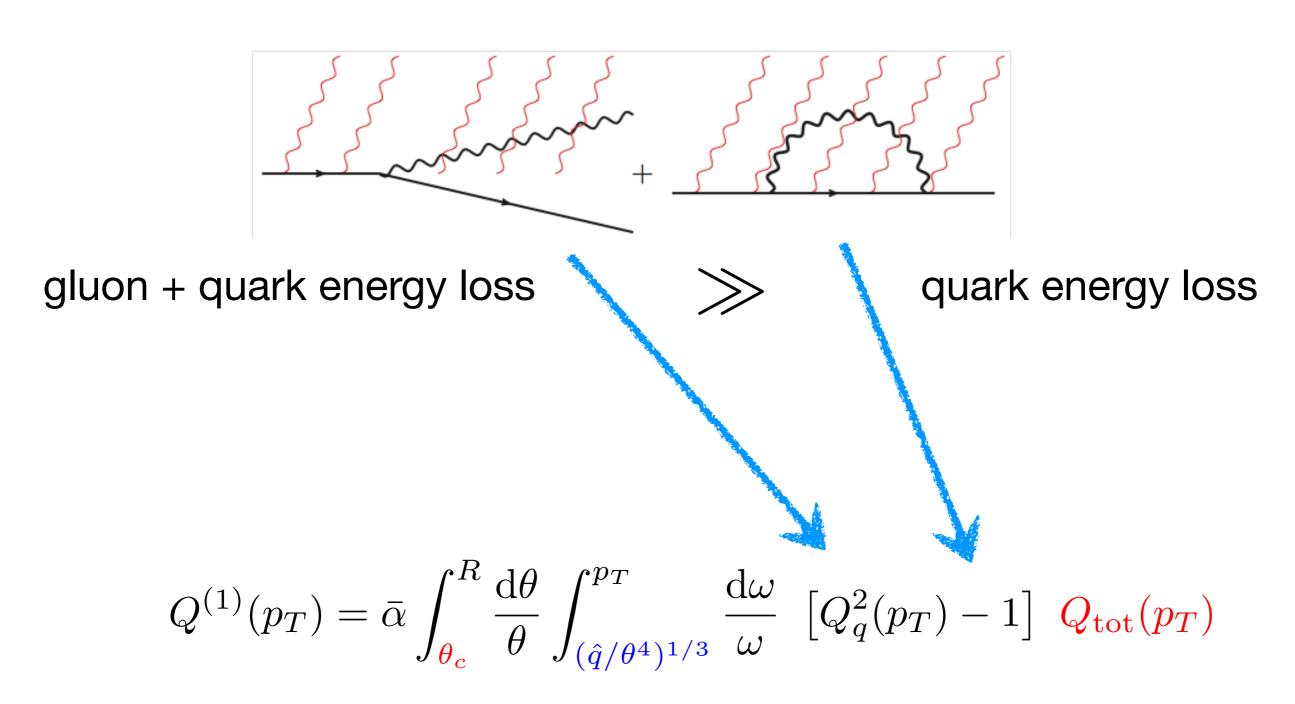
shower

See Paul Caucal's talk on Thursday [Caucal et al 2018] $\ln \frac{1}{z}$ 1-z $\ln(p_T R^2 L)$ $\theta_c \equiv 1/\sqrt{\hat{q}L^3}$ $t_{\rm f} = L$ $\omega_c \equiv \hat{q}L^2$ $\ln \frac{p_T}{\omega_c}$ and Marta Verweij's talk on Wednesday $t_{\rm f} \ll t_{\rm d} \ll L$ medium vacuum $\ln(p_{\scriptscriptstyle T} L)^{1/2}$ $-\ln\theta_c$ $-\ln R$ coherent in-medium


vacuum shower

NLO corrections to the jet spectrum

$$R_{\rm AA} = Q^{(0)} + \bar{\alpha} Q^{(1)} + \mathcal{O}(\bar{\alpha}^2)$$


 To leading-log (LL) accuracy: cancellation between real and virtual contributions (KLN theorem) except in the region

$$t_{\rm f} \ll t_{\rm d} \ll L$$

NLO correction to the jet spectrum

Mismatch between real and virtual

NLO correction to the jet spectrum

 LL contributions exponentiate in the strong quenching limit: only the leading particle survives albeit suppressed by a Sudakov form factor in addition to its total charge energy loss

$$C(p_T) = \exp\left[-2\bar{\alpha}\ln\frac{R}{\theta_c}\left(\ln\frac{p_T}{\omega_c} + \frac{2}{3}\ln\frac{R}{\theta_c}\right)\right]$$

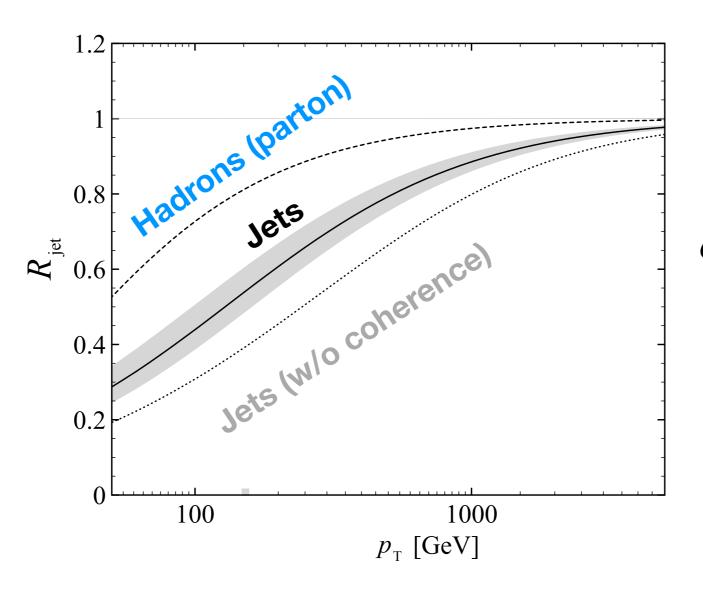
Now we have:

$$R_{\rm AA} \sim Q(p_T) = Q_{\rm tot}(p_T) \times C(p_T)$$

 Increasing suppression with R (at large R energy must be recovered, not included here). Effect observed on groomed jets with JEWEL [Andrews et al (2018)]

Jet suppression: numerics

 Including running coupling, full LO splitting function and finite quenching, we obtain a non-linear evolution equation:


$$C_q(p_T, R) = 1 + \int_0^1 dz \int_0^R \frac{d\theta}{\theta} \frac{\alpha_s(k_\perp)}{\pi} P_{qg}(z) \Theta(t_f < t_d < L)$$

$$\times \left[C_q(zp_T, \theta) C_g(zp_T, \theta) \mathcal{Q}_q^2(p_T) - C_q(zp_T, \theta) \right]$$

 Caveats: pT-broadening, mini-jet absorption, in-cone medium-induced radiation, medium back-reaction neglected

Jet suppression: numerics

$$R_{\rm jet} = Q_{\rm tot}(p_T) \times C(p_T)$$

$$R = 0.4$$

$$\hat{q} = 1 \text{GeV}^2/\text{fm}$$

$$L = 3 \text{fm}$$

Summary

- Important high order corrections to jet quenching: sensitivity of the inclusive jet spectrum to fluctuations of jet substructure (encoded qualitatively in MC's not in analytic approaches)
- To leading log accuracy in the strong quenching limit we obtain a Sudakov suppression factor
- Probabilistic picture to LL accuracy: (i) early in-medium vacuum shower generated by medium-modified Sudakov. (ii) Unresolved vacuum shower for $\theta < \theta_c$. (iii) Resolved partons for $\theta > \theta_c$ undergo medium-induced cascade over a distance of order the medium length. (iv) Final stage: fragmentation in vacuum with modified angular ordering
- Outlook: Investigate jet substructure observables, combine analytic and MC studies, ...