System size dependence of J/ψ nuclear modification from PHOENIX

Matt Durham
Los Alamos National Laboratory
Charmonium production in the nucleus

Charm production (pQCD) + hadronization

$1.2 < |y| < 2.4$

$p + p \rightarrow J/\psi + X$

$\sqrt{s} = 200 \text{ GeV}$

Global uncertainty = 10%

PRD 85 092004 (2012)
Charmonium production in the nucleus

Charm production (pQCD) + hadronization

PRD 85 092004 (2012)

1.2<|y|<2.4
p+p → J/ψ + X
√s=200 GeV
global uncertainty = 10%

Charm production (pQCD) + hadronization + color screening

PRC 84 054912 (2011)
Charmonium production in the nucleus

1.2 < |y| < 2.4
p+p → J/ψ + X
\(\sqrt{s} = 200 \text{ GeV} \)
global uncertainty = 10%

PRD 85
092004 (2012)

Charm production (pQCD) + hadronization

-2.2 < y < -1.2 (8.3%)
l_\parallel < 0.35 (7.8%)
1.2 < y < 2.2 (8.2%)

PRC 84
054912 (2011)

Charm production (pQCD) + hadronization + color screening
Charmonium production in the nucleus

R_{dAu} data:
- $-2.2 < y < -1.2$ (8.3%)
- $|y| < 0.35$ (7.8%)
- $1.2 < y < 2.2$ (8.2%)

Together have >350 citations
Charmonium production in the nucleus

PDF Modifications

Vogt, PRC 92 034909 (2015)

-2.2 < y < -1.2 (8.3%)
| y |<0.35 (7.8%)
| 1.2 < y < 2.2 (8.2%)

PHENIX d+Au J/Ψ data:
Together have >350 citations
Charmonium production in the nucleus

PDF Modifications

Gluon saturation/CGC

Vogt, PRC 92 034909 (2015)

Ma et al, PRD 92 071901 (2015)

PHENIX data:

Together have >350 citations
Charmonium production in the nucleus

PDF Modifications

Vogt, PRC 92 034909 (2015)

Gluon saturation/CGC

Ma et al, PRD 92 071901 (2015)

Energy Loss

Arleo, JHEP 1303 (2013)

Together have >350 citations

-2.2<y<-1.2 (8.3%)
|y|<0.35 (7.8%)
1.2<y<2.2 (8.2%)
Charmonium production in the nucleus

PDF Modifications

PHENIX d+Au J/ψ data:
Together have >350 citations

Gluon saturation/CGC

Ma et al, PRD 92 071901 (2015)

Energy Loss

Arleo, JHEP 1303 (2013)

Comovers

Ferreiro, PLB 749 (2015)
Charmonium production in the nucleus

PDF Modifications

Gluon saturation/CGC

Energy Loss

Comovers

Short-lived plasma phase

Vogt, PRC 92 034909 (2015)

Ma et al, PRD 92 071901 (2015)

Arleo, JHEP 1303 (2013)

Ma et al, PRD 92 071901 (2015)

Ferreiro, PLB 749 (2015)

Charmonium production in the nucleus

-2.2<y<-1.2 (8.3%)

|y|<0.35 (7.8%)

1.2<y<2.2 (8.2%)

Together have >350 citations
Charmonium production in the nucleus

PDF Modifications

Vogt, PRC 92 034909 (2015)

Gluon saturation/CGC

Ma et al, PRD 92 071901 (2015)

Energy Loss

Arleo, JHEP 1303 (2013)

Comover

Ferreiro, PLB 749 (2015)

Short-lived plasma phase

“Breakup” cross section

PRL 107, 143301 (2011)

Charmonium production in the nucleus

PDF Modifications
Vogt, PRC 92 034909 (2015)

Gluon Saturation/CGC
Ma et al, PRD 92 071901 (2015)

Energy Loss
Arleo, JHEP 1303 (2013)

Comovers
Ferreiro, PLB 749 (2015)

Short-lived plasma phase

"Breakup" cross section
PRL 107, 143301 (2011)
Charmonium production in the nucleus

PDF Modifications

- Vogt, PRC 92 034909 (2015)
- Ma et al, PRD 92 071901 (2015)

Gluon Saturation/CGC

- Ma et al, PRD 92 071901 (2015)

Energy Loss

- Arleo, JHEP 1303 (2013)

Comovers

- Arleo, JHEP 1303 (2013)

Energy Loss

- Arleo, JHEP 1303 (2013)

Charmonium production in the nucleus

 Together have >350 citations

- Ma et al, PRD 92 071901 (2015)
- Arleo, JHEP 1303 (2013)

- PRL 107, 143301 (2011)
Charmonium production in the nucleus

Wide range of physical mechanisms all describe data.
Varying the initial state

Vary target nucleus:
Changes magnitude of PDF modifications

Vary path length charm precursor state travels inside nucleus
->Affects initial state energy loss

\[r = 1.2 \, fm \cdot A^{1/3} \]
Varying the final state

Vary projectile:
Changes density of final state particles, especially in backward direction.

![Graph showing varying final state densities](image)

PHENIX

- **p+p**
 - Many Runs
 - Run-15

- **p+Al**
 - Run-15

- **p+Au**
 - Run-15
 - Run-3,8,16

- **d+Au**
 - Run-14

Comovers

Short-lived plasma phase

“Breakup” cross section
- Vary projectile:
- Changes density of final state particles, especially in backward direction.

Designed to measure quarkonia down to $p_T = 0$ through dilepton decays at mid and forward rapidity, and open HF through semileptonic decays.

Muons: $1.2 < |y| < 2.2$,
-Tracked with silicon, wire chambers
-Further muon ID with layers of steel and streamer tubes

Electrons: $|y| < 0.35$,
-Tracked with DC, PC
-ID with RICH, EmCal

$$x \approx 3 \times 10^{-2}$$
Near anti-shadowing/shadowing crossover

$$x \approx 8 \times 10^{-2}$$
Anti-shadowing region

Au, Al

$d, p, ^3\text{He}$
Quarkonia in $p+p$ collisions – Run 15

Total Fit:

Crystal Ball function for $J/\psi(1S)$ and $\psi(2S)$

- $M_{\psi(2S)} - M_{J/\psi}$ constrained to PDG value
- Crystal Ball n, α parameters same

Background is sum of like sign + exponential

*FVTX silicon tracker not necessary for J/ψ, but is necessary to clearly separate $\psi(2S)$ peak
Quarkonia in $p+p$ collisions – Run 15

Run-15 $p+p \sqrt{s} = 200$ GeV

-2.2 < y < -1.2

Run-15 $p+p \sqrt{s} = 200$ GeV

1.2 < y < 2.2
Quarkonia in $p+p$ collisions – Run 15

- Consistent with older data that was recorded with thinner hadron absorber
- Consistent forward/backward

$B_{ll}d\sigma/dy$ (nb)

$p+p \sqrt{s}=200$ GeV

- 2006+2008
- 2015

Quarkonia in $p+p$ collisions
Quarkonia in p+Al collisions – Run 15

Run-15 p+Al $\sqrt{s} = 200$ GeV

$-2.2 < y < -1.2$ Al-going

Inclusive $J/\psi \sqrt{s_{NN}}=200$ GeV

PHENIX preliminary

Run-15 p+Al $\sqrt{s} = 200$ GeV

$1.2 < y < 2.2$ p-going

PHENIX preliminary
New results: p_T dependence

Inclusive J/ψ $\sqrt{s_{NN}}=200$ GeV
$-2.2<y<-1.2$ (A-going)

R_{p+A}

p_{T} (GeV/c)

Inclusive J/ψ $\sqrt{s_{NN}}=200$ GeV
$1.2<y<2.2$ (p-going)

R_{p+A}

p_{T} (GeV/c)
New results: p_T dependence

Some evidence of Cronin broadening
Overall, effects are small.
Quarkonia in \(p+Au \) collisions – Run 15

Run-15 \(p+Au \) \(\sqrt{s} = 200 \text{ GeV} \)

-2.2 \(y \) \(< \) 1.2

\(\text{Au-going} \)

\(\mu^+ \mu^- \) mass (GeV/c^2)

\[\text{raw counts/(50 MeV/c}^2) \]

Run-15 \(p+Au \) \(\sqrt{s} = 200 \text{ GeV} \)

1.2 \(y \) \(< \) 2.2

\(\text{p-going} \)

\[\text{raw counts/(50 MeV/c}^2) \]

Inclusive \(J/\psi \) \(\sqrt{s_{NN}} = 200 \text{ GeV} \)

\(R_{AB} \)

\(y \) \text{ rapidity}

Inclusive J/\(\psi \) \(\sqrt{s_{NN}} = 200 \text{ GeV} \)

\(\mu^+ \mu^- \) mass (GeV/c^2)

\(\text{raw counts/(50 MeV/c}^2) \)
New results: p_T dependence

- p_T dependence
- $p+Au$
- PHENIX preliminary

Inclusive J/ψ \(\sqrt{s_{NN}}=200 \text{ GeV} \)

$-2.2<y<-1.2$ (A-going)

$1.2<y<2.2$ (p-going)
New results: p_T dependence

$p+A$, $p+Au$ differences at low p_T
New results: p_T dependence

Consistent with $d+Au$ within uncertainties.
Quarkonia in 3He+Au collisions – Run 14

Run-14 3He+Au $\sqrt{s} = 200$ GeV

-2.2 < y < -1.2
Au-going

3He+Au

Inclusive J/ψ $\sqrt{s_{NN}}$=200 GeV

R_{AB}

0 0.5 1 1.5

-2 0 2

rapidity

Run-14 3He+Au $\sqrt{s} = 200$ GeV

1.2 < y < 2.2
3He-going

ψ

Inclusive J/

Quarkonia in 3He+Au collisions – Run 14
New results: p_T dependence

R_{3He+Au}

Inclusive J/ψ, $\sqrt{s_{NN}}=200$ GeV

-2.2 < y < -1.2 (A-going)

1.2 < y < 2.2 (3He-going)
New results: p_T dependence

Consistent with p+Au within uncertainties.
R_{AB} vs N_{part} in small systems

Inclusive J/ψ \(\sqrt{s_{NN}} = 200 \) GeV
-2.2 < y < 1.2 (Al/Au-going)

1.2 < y < 2.2 (p/d/3He-going)
R_{AB} vs N_{part} in small systems

Inclusive J/ψ \(\sqrt{s_{NN}} = 200 \text{ GeV} \)

-2.2 < y < 1.2 (Al/Au-going)

p+Al
p+Au
d+Au PRL 111 202301 (2013)

3He+Au

N_{part}

0 10 20

0 0.5 1 1.5

R_{AB}

p+Al
p+Au
d+Au PRL 111 202301 (2013)

3He+Au

N_{part}

0 10 20

0 0.5 1 1.5

R_{AB}

Charged hadrons

-2.2 < y < 1.2, p+Au (Au-going)
-2.2 < y < 1.2, p+Al (Al-going)
1.2 < y < 2.4, p+Au (p-going)
1.2 < y < 2.4, p+Al (p-going)

h_1, 2.5 < p_T < 5 GeV/c

10% global sys. uncertainty

PHENIX preliminary
R_{AB} vs N_{part} in small systems

Charged hadrons

- Charged hadrons suppressed
- J/ψ suppressed
- Suggests initial state effect

Shadowing may be dominant effect here
R_{AB} vs N_{part} in small systems

Charged hadrons

Forward rapidity: relatively low hadron density
- Charged hadrons suppressed
- J/\psi suppressed
Suggests initial state effect
shadowing may be dominant effect here

Backward rapidity: relatively high hadron density
Charged hadrons enhanced
J/\psi suppressed
Suggests final state effect
“breakup” may be dominant effect here

 Charged hadrons

- -2.2<\eta<-1.2, p+Au (Au-going)
- 1.2<\eta<2.4, p+Au (p-going)
- 2.5<p_T<5 GeV/c

10% global sys. uncertainty
Comparing charm across small systems

Open HF muons

<table>
<thead>
<tr>
<th>Observable</th>
<th>-2.2<y<-1.2</th>
<th>1.2<y<2.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open HF (muons)</td>
<td>enhanced</td>
<td>some suppression</td>
</tr>
</tbody>
</table>
Comparing charm across small systems

Open HF muons

<table>
<thead>
<tr>
<th>Observable</th>
<th>-2.2<y<-1.2</th>
<th>1.2<y<2.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open HF (muons)</td>
<td>enhanced</td>
<td>some suppression</td>
</tr>
<tr>
<td>J/ψ(1S)</td>
<td>suppressed</td>
<td>suppressed</td>
</tr>
</tbody>
</table>
Comparing charm across small systems

<table>
<thead>
<tr>
<th>Observable</th>
<th>-2.2 < y < -1.2</th>
<th>1.2 < y < 2.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open HF (muons)</td>
<td>enhanced</td>
<td>some suppression</td>
</tr>
<tr>
<td>J/ψ(1S)</td>
<td>suppressed</td>
<td>suppressed</td>
</tr>
<tr>
<td>ψ(2S)</td>
<td>highly suppressed</td>
<td>equal suppressed</td>
</tr>
</tbody>
</table>
Summary

• PHENIX has measured J/ψ production across a wide range of system size

• Similar effects are seen in forward direction for all small systems with the same nuclear target, suggesting initial state effects in nucleus dominate
 • Shadowing and/or energy loss are prime suspects

• Comparisons with open charm and hadron production suggests final state effects on J/ψ are significant at backwards rapidity, and very important for excited states

• Centrality dependence in small systems coming soon