

System size dependence of J/ψ nuclear modification from

Matt Durham

Los Alamos National Laboratory

+color screening

Wide range of physical mechanisms all describe data.

Varying the initial state

Varying the final state

Vary projectile: Changes density of final state particles, especially in backward direction.

PHENIX Detector

Designed to measure quarkonia down to pT = 0 through dilepton decays at mid and forward rapidity, and open HF through semileptonic decays

Quarkonia in *p*+*p* collisions – Run 15

Quarkonia in *p*+*p* collisions – Run 15

Quarkonia in p+p collisions – Run 15

- Consistent with older data that was recorded with thinner hadron absorber
- Consistent forward/backward

Quarkonia in p+Al collisions – Run 15

Some evidence of Cronin broadening Overall, effects are small.

Quarkonia in p+Au collisions – Run 15

p+Al, p+Au differences at low p_T

Consistent with d+Au within uncertainties.

Quarkonia in ³He+Au collisions – Run 14

 ${\sf R}^{{\scriptscriptstyle 3}}_{{\sf H}^{{\sf e}+{\sf A}}}$

Consistent with p+Au within uncertainties.

Comparing charm across small systems

Observable	-2.2 <y<-1.2< th=""><th>1.2<y<2.2< th=""></y<2.2<></th></y<-1.2<>	1.2 <y<2.2< th=""></y<2.2<>
Open HF (muons)	enhanced	some suppression

Comparing charm across small systems

Observable	-2.2 <y<-1.2< th=""><th>1.2<y<2.2< th=""></y<2.2<></th></y<-1.2<>	1.2 <y<2.2< th=""></y<2.2<>
Open HF (muons)	enhanced	some suppression
J/ψ(1S)	suppressed	suppressed

Comparing charm across small systems

Observable	-2.2 <y<-1.2< th=""><th>1.2<y<2.2< th=""></y<2.2<></th></y<-1.2<>	1.2 <y<2.2< th=""></y<2.2<>
Open HF (muons)	enhanced	some suppression
J/ψ(1S)	suppressed	suppressed
ψ(2S)	highly suppressed	equal suppressed

Summary

- PHENIX has measured J/ ψ production across a wide range of system size
- Similar effects are seen in forward direction for all small systems with the same nuclear target, suggesting initial state effects in nucleus dominate
 - Shadowing and/or energy loss are prime suspects
- Comparisons with open charm and hadron production suggests final state effects on J/ ψ are significant at backwards rapidity, and very important for excited states
- Centrality dependence in small systems coming soon

