

Scaling properties of high p_T light hadrons from small to large systems by PHENIX

Mitrankov Iurii For PHENIX collaboration

Hard Probes 2018: International Conference on Hard & Electromagnetic Probes of High-Energy Nuclear Collisions

Motivation

- One of the major objectives in the field of high-energy nuclear physics is to quantify and characterize the properties of quark-gluon plasma (QGP);
- Hadron production in p+p, p+A, A+A collisions provides a look inside **QGP**;
- At high-p_T hadron production is suppressed in central heavy ion collisions:
 - energy loss of hard scattered partons in hot and dense medium (jet quenching);
- In the intermediate p_T range suppression was found to be species dependent:
 - "baryon puzzle" explained with recombination models;
- PHENIX measured light hadron production in a broad set of collisions:
 - π^0 , η , K_s, φ , ω in p+Au, d+Au, ³He+Au, Cu+Cu, Cu+Au, Au+Au, U+U;
- Rich collection of results allows to study scaling properties of light hadron production from small to large systems:
 - parton energy loss in heavy ion collisions;
 - cold nuclear matter (CNM) effects in small systems.

Large systems: Cu+Au & U+U

- Hadron production at PHENIX was successfully studied in symmetric systems;
- Cu+Au:
 - First asymmetric heavy-ion collision system available at PHENIX;
 - Collisions with unique initial geometrical configurations;
- U+U:
 - The largest heavy ion collision system;
 - The largest energy density in central collisions.

π^0 , η , K_s , φ , ω p_T-spectra in Cu+Au & U+U

 $\pi^{0}, \eta, K_{s}, \omega R_{CuAu}$ at $\sqrt{s_{NN}}=200 \text{ GeV}$

• π^0 , η , K_s, ω shows similar suppression values in Cu+Au collisions

 $\phi \mathbf{R}_{\mathbf{CuAu}}$ at $\sqrt{s_{\mathbf{NN}}}=200 \text{ GeV}$

 $\phi \mathbf{R}_{\mathbf{CuAu}}$ at $\sqrt{s_{\mathbf{NN}}}=200 \text{ GeV}$

For all centralities up to 40-60%, φ is less suppressed than π^0 , η , K_s , ω in the intermediate p_T range

- For all centralities up to 40-60%, φ is less suppressed than π^0 , η , K_s, ω in the intermediate p_T range
- At $p_T > 5$ GeV/c, φ , π^0 , η , K_s, ω show similar suppression values.
- Same light meson behavior was observed in Cu+Cu and Au+Au collisions.

Light mesons integrated R_{CuAu} at $\sqrt{s_{NN}}=200 \text{ GeV}$

• Light mesons integrated R_{AA} at $p_T > 5$ GeV/c show approximately same suppression level.

Light mesons integrated R_{CuAu} at $\sqrt{s_{NN}}=200 \text{ GeV}$

- Light mesons integrated R_{AA} at $p_T > 5$ GeV/c show approximately same suppression level.
- The φ integrated R_{AA} at p_T>2 GeV/c show less suppression than π^0 & η ;

Comparison of symmetric and asymmetric systems

- Light mesons yields in Cu+Au show similar suppression as in Cu+Cu and Au+Au at similar N_{part}:
 - Production and suppression of the light mesons seems to scale with the average size of the nuclear overlap region, regardless of the details of its shape

- At same N_{coll} values, the R_{AA} is consistent in most- to mid-central collisions
 - π^0 production depends on the size of the nuclear overlap, but not on it's density

π^0 nuclear Modification in U+U

- At same N_{coll} values, the R_{AA} is consistent in most- to mid-central collisions
 - π^0 production depends on the size of the nuclear overlap, but not on it's density
- The most peripheral collision shows larger suppression in U+U collisions

- Study of small systems collisions will help us to investigate:
 - Whether high-p_T hadron suppression in large systems is due to final state effects or because of CNM effects;
 - CNM effects include:
 - \circ multiple scattering of an incident proton in a target nucleus (Cronin effect);
 - \circ initial-state energy loss;
 - \circ k_T broadening.

$\pi^0 R_{AA}$ in p+Au, d+Au, ³He+Au

Peter the Great St.Petersburg Polytechnic

Peter the Great St. Petersburg Polytechnic

Iu. Mitrankov for PHENIX at HP'18

13

$\pi^0 R_{AA}$ in p+Au, d+Au, ³He+Au

Hint of suppression at high p_T in central collisions

- In most central collisions in the intermediate p_T range ordering is seen
 - Suppression at $p_T = 5 \text{ GeV/c}$ indicates a system size dependence

- In most central collisions in the intermediate p_T range ordering is seen
 - Enhancement indicates a system size dependence

Summary

Large Systems:

- Light mesons R_{AA} in large systems for similar N_{part} values exhibit similar shape;
 Production and suppression of the light meson seems to depend on nuclear overlap size, but not on its geometry and not on its density;
- The φ -meson exhibits a different suppression pattern compared to lighter mesons;

Small systems:

- $\pi^0 R_{AA}$'s are consistent at high-p_T in p/d/³He+Au collisions in all centralities;
- In most central collisions in the intermediate p_T range there's an ordering of $R_{pAu} > R_{dAu} > R_{HeAu}$

Summary

Large Systems:

- Light mesons R_{AA} in large systems for similar N_{part} values exhibit similar shape;
 o Production and suppression of the light meson seems to depend on nuclear overlap size, but not on its geometry and not on its density;
- The φ -meson exhibits a different suppression pattern compared to lighter mesons;

Small systems:

- $\pi^0 R_{AA}$'s are consistent at high-p_T in p/d/³He+Au collisions in all centralities;
- In most central collisions in the intermediate p_T range there's an ordering of $R_{pAu} > R_{dAu} > R_{HeAu}$

Thank you for your attention!