Studies of beauty suppression via nonprompt D⁰ mesons in PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

Hao Qiu

for the CMS Collaboration

Purdue University

Probing QGP with heavy quark energy loss

- Quark-gluon plasma (QGP) is created in heavy ion collisions.
- Heavy predominantly produced in the early hard scatterings carry information about QGP evolution history

- Heavy quarks can lose energy in QGP medium by collisional and radiative interatctions
- Particle p_T spectra will be modified, quantified with nuclear modification factor:

$$R_{AA} = \frac{1}{T_{AA}} \frac{dN_{PbPb}}{dp_{T}} \bigg/ \frac{d\sigma_{pp}}{dp_{T}}$$

Hao Qiu

Probing QGP with heavy quark energy loss

- Mass and p_T dependence of heavy quark R_{AA} are observed
- This talk: studying the energy loss of b quark via B→D⁰
 - larger decay BR than $B \rightarrow J/\psi$ & fully reconstructed $B^{+/-}$ arger B sample
 - larger p_T coverage discriminate radiative vs. collisional parton energy loss

Hao Qiu

CMS detector

Data sets and analysis channel

- 2015 pp @ 5.02 TeV
 - minimum-bias (MB) events: 2.67 B collisions
 - high $p_T D^0$ triggers: 27.4 pb-1
- 2015 PbPb @ 5.02 TeV
 - MB events: 294 M
 - high $p_T D^0$ triggers: 530 µb-1
- D⁰→K⁻π⁺
 - BR = (3.88±0.05)%
 - cτ(D⁰) = 122.9 μm

- B→D⁰ and prompt D⁰ separation
 - B→D⁰: non-zero Distance of Closest Approach (DCA) due to B decay
 - Prompt D⁰: DCA only from track and vertex resolution

Hao Qiu

D⁰ reconstruction

- $D^0 \rightarrow K^-\pi^+$ each track pair reconstructed twice assuming $K\pi$ and πK
- Daughter track selection
 - |η| < 1.5
 - $p_T > 1$ GeV/c (minimum-bias), $p_T > 2$ GeV/c (pp D⁰ triggered), $p_T > 8.5$ GeV/c (PbPb D⁰ triggered)

- Geometry cuts, optimized for $B \rightarrow D^0$ significance for different $D^0 p_T$ ranges
 - minimum probability that the two tracks comes from a common decay vertex
 - minimum flight distance / σ(flight distance)
 - minimum daughter track DCA / σ (daughter track DCA)

D⁰ signal extraction and prompt / nonprompt separation

p_T spectra

$$\left. rac{\mathrm{d} \sigma_{\mathrm{pp}}^{\mathrm{B}
ightarrow \mathrm{D}^{0}}}{\mathrm{d} p_{\mathrm{T}}}
ight|_{|y| < 1} = rac{1}{2 \mathcal{L} \Delta p_{\mathrm{T}} \mathcal{B}} \left. rac{N_{\mathrm{pp}}^{\mathrm{B}
ightarrow \mathrm{D}^{0} + \overline{\mathrm{D}}^{0}}{lpha \epsilon}
ight|_{|y| < 1}$$

$$\frac{1}{T_{AA}} \left. \frac{\mathrm{d}N_{\mathrm{PbPb}}^{\mathrm{B} \to \mathrm{D}^{0}}}{\mathrm{d}p_{\mathrm{T}}} \right|_{|y|<1} = \frac{1}{T_{AA}} \frac{1}{2N_{\mathrm{events}} \Delta p_{\mathrm{T}} \mathcal{B}} \left. \frac{N_{\mathrm{PbPb}}^{\mathrm{B} \to \mathrm{D}^{0} + \overline{\mathrm{D}}^{0}}}{\alpha \epsilon} \right|_{|y|<1}$$

 close to the upper bound of the FONLL calculation in pp

CMS-PAS-HIN-16-016

Hao Qiu

 $\mathsf{R}_{\mathsf{A}\mathsf{A}}(\mathsf{B} \rightarrow \mathsf{D}^0) \approx \mathsf{R}_{\mathsf{A}\mathsf{A}}(\mathsf{B} \rightarrow J/\psi) \approx \mathsf{R}_{\mathsf{A}\mathsf{A}}(\mathsf{B} \text{ meson})$

- $R_{AA}(B \rightarrow J/\psi), R_{AA}(B \rightarrow D^0) > R_{AA}(D^0), R_{AA}(charged hadrons), for p_T ~ 10 GeV/c$
 - quark mass ordering ٠
- decay kinematics should be considered: e.g. ancestor B $p_T \neq$ daughter D⁰ or $J/\psi p_T$ Hard Probes 2018 Hao Qiu

CUJET3, EPOS2+MC@sHQ: perturbative QCD-based models that includes both collisional and radiative energy loss.

Xu, Liao, Gyulassy JHEP 1602 (2016) 169 Gossiaux et al., NPA 931 (2014) 581

TAMU: non-perturbative transport model with thermodynamic T-matrix approach. *He, Fries, Rapp, PLB 735 (2014) 445*

PHSD: microscopic off-shell transport model based on a Boltzmann approach that includes collisional energy loss only.

Song et al., PRC 92 (2015) 014910

consistent with several models at high p_T

- hint of stronger suppression than all available models at low $\ensuremath{p_{\text{T}}}$
 - stronger b quark energy loss?
 - baryon enhancement? BR (b baryon→D⁰) << BR (B^{±/0}→D⁰)

Hao Qiu

Outlook

- More precise and differential measurements in the future
 - 20x MB data statistics in year 2018
 - pixel detector upgrade: 3 → 4 layers
 - $B \rightarrow D^0 v_2$ error projection: ~3% for best p_T bins

Che Ming Ko et al. Braz. J. Phys. vol.37 no.3a 2007

Summary

- $R_{AA}(B \rightarrow D^0) \approx R_{AA}(B \rightarrow J/\psi) \approx R_{AA}(B \text{ meson})$
- Beauty seems to be less suppressed than charm and light flavor at ~ 10 GeV.
 - quark mass ordering

- $B \rightarrow D^0 R_{AA}$ result is consistent with models at high $p_{T.} e^{\xi_{0.8}}$
- Hint of stronger suppression than models at low $\ensuremath{p_{\text{T}}}$

