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The KKKS08 FFs follow the trend of the data even further
down to the lowest pT values shown in Figs. 6 and 7; for the
sake of applicability of pQCD, we refrain from showing
comparisons to the LHCb data below pT ¼ 2 GeV. This
feature of the KKKS08 fit, which is unexpected in a
ZMVFNS approach, might be due to the inclusion of finite
hadron mass corrections in their fit of SIA data, that are,
however, beyond the factorized framework outlined in
Sec. II and adopted by us. It is also interesting to notice
that there are some indications for a mild tension between
the ATLAS and the LHCb data in our global fit. The
ATLAS data alone would prefer a somewhat larger gluon-
to-D"þ-meson FF as can be inferred from the middle panel
of Fig. 5. This would yield a significantly better fit of the
ATLAS data in terms of χ2 even when the in-jet fragmen-
tation data, which we shall discuss next, are included in the
fit. The latest, revised version of the LHCb data [36] does

not tolerate, however, such an increased gluon FF in our
global analysis.
We refrain from showing comparisons of our theoretical

results with the ALICE and CDF data on single-inclusive,
high-pT D"þ-meson production. As can be seen from
Table II, the few data points which pass our cut on pT
are very well reproduced by our fit. Again, adopting the
KKKS08 set of FFs leads to a similar description of these
data, assuming DD"þ

i ¼ DD"$
i =2.

Finally, we turn to data on in-jet production, which, in
this paper, are considered for the first time in a global QCD
analysis of FFs and, hence, represent the centerpiece of our
phenomenological studies. The relevant QCD formalism to
compute in-jet production in the standard factorized frame-
work at NLO accuracy was sketched in Sec. II C. The main
and novel asset of this process, as compared to single-
inclusive hadron production in pp collisions, is the fact that
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FIG. 8. Data on in-jet-fragmentation into D"$-mesons measured at
ffiffiffi
S

p
¼ 7 TeV as a function of the momentum fraction zh in five

bins of pjet
T integrated over rapidity jηjetj < 2.5 as provided by ATLAS [26]. The combination of all pjet

T bins (lower right) is only shown
for comparison and is not included in our fit to avoid double counting. In each panel, NLO results obtained with our best fit (solid lines)
and the KKKS08 (dashed lines) FFs are shown. The shaded bands refer to uncertainty estimates based on our Hessian uncertainty sets.
In the lower panels of each plot, the ratio of the data and the KKKS08 prediction with respect to our NLO result are given.
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hand, if the integral is dominated by the large-z region,
where DH=Q ðzÞ decreases with increasing z, sampling rela-
tively higher-z means smaller DH=Q ðzÞ. One thus has

I!HAA < 1.
One keeps in mind that we have a three-particle final

state, thus zT ¼ pTH
=pT!

is not the same as the momentum

fraction z in heavy meson decay probability DH=Q ðzÞ ac-
cording to Eq. (8). Nevertheless, we find that the average
hzi in the collision does increase as zT increases. Thus, at
high zT where the z-integral in I!HAA is dominated by the
large z region, one should expect that both B and D mesons
are suppressed due to jet quenching. The magnitude of the

suppression should follow I!BAA > I!DAA > I!h
$

AA if the heavy
quark loses less energy than the light quark, as predicted by
perturbative QCD calculations. On the other hand, in the
low zT region, according to our calculation, we find that

I!DAA > 1 for D meson, consistent with our naive expecta-
tion, that is the low z region dominates the z integral in
Eq. (8).

However, for !-triggered B mesons I!BAA < 1 for the
whole zT region for the kinematics we have chosen at
RHIC. This is due to the fact that our B-meson fragmenta-
tion function is even harder than the D -meson fragmenta-
tion function. It drops very fast at high z while increasing
only slowly at low z. Thus the nuclear modification from
high z (suppression) wins over that from low z (enhance-
ment) for the kinematic region we have chosen. Combining
the analysis for both the low and the high zT ends, one
immediately finds that the nuclear modification I!HAA for

!-triggered B-meson fragmentation function is flatter than
that for the D -meson case. Another important reason for
this flatter behavior and the smaller size of the nuclear
modification is the smaller energy loss of the b quark in
comparison to the c quark. Thus, the shape of the nuclear
modification for the !-triggered fragmentation functions
can carry valuable information about the properties of
medium-induced gluon bremsstrahlung.
In Fig. 6 we give predictions for the !-triggered light

and heavy meson production in both pþ p and central
Pbþ Pbcollisions at

ffiffiffiffiffiffiffiffiffi
SNN

p ¼ 2:76 TeV at the LHC. We
integrate over both the photon and hadron rapidities from
& 2 to 2. In the left (right) panel, the trigger photon
momentum is integrated from 10< pT!

< 20 GeV (25<

pT!
< 50 GeV). The uncertainty band comes from the fact

that we have included a ' 25% uncertainty in the magni-
tude of the energy loss in our jet quenching calculation.
The behavior of IAA follows from similar considerations for
the relevant kinematics. It is also interesting to notice that
for low zT both I!BAA and I!DAA can be larger than unity in the
chosen kinematic region.
It will be illuminating and important to measure such

correlations for both light and heavy meson production in
pþ pand A þ A collisions at RHIC and at the LHC.

IV. CONCLUSIONS

We studied photon-triggered light hadron and heavy
meson production in both pþ p and A þ A collisions.
We found that the energy loss approach that was successful
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FIG. 6 (color online). (Top) Predictions for the !-triggered fragmentation functions D ðzTÞ, where the solid lines are for pþ p
collisions and the dashed lines are for central Pbþ Pb collisions at

ffiffiffiffiffiffiffiffiffi
SNN

p ¼ 2:76 TeV. (Bottom) Predictions for the nuclear
modification factor IAAðzTÞ, where the solid lines are for the B meson, the dashed lines are for the D meson, and the dashed-dotted
lines are for charged hadrons. We have integrated the photon and hadron rapidities over ½& 2; 2). For the left plot, the photon
momentum has been integrated over [10, 20] GeV, while for the right plot, it has been integrated over [25, 50] GeV.
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Associated particles: charged
tracks
Finite acceptance correction with
event mixing
B feed-down subtracted
Based on FONLL beauty cross
section and correlation templates
from PYTHIA

Fit performed with a double
Gaussian and a constant for the
baseline

T. Renk / Nuclear Physics A 932 (2014) 334–341 335

Fig. 1. Sketch of various ways of observing a hard back-to-back event experimentally

hard process itself will take place without influence by the surrounding medium, leaving the in-
teraction with the medium as a final state effect modifying a perturbatively calculable process. In 
other words, the attenuation pattern of hard partons propagating through the medium can be used 
to do tomography since the initial production rate of these partons is under control. The simplest 
class of measurements focuses on disappearance, such as the nuclear modification factor RAA
for single hadrons or reconstructed jets. These reveal that the interaction with the medium sup-
presses high PT hadrons and jets [1–3], but not much about the underlying mechanism. In order 
to probe the physics more differentially, other observables offer themselves, cf. Fig. 1.

The basic topology of a hard event consists of two highly virtual partons, approximately back 
to back, which evolve first in terms of a parton shower while passing through the medium before 
they hadronize. However, this process needs to be detected and studied on the background of 
hadrons coming from the medium itself. For this purpose, typically a trigger condition is evalu-
ated to make sure that the transverse momentum PT scale of the process is above some threshold. 
The trigger condition can refer to a single hadron (typically the leading hadron of the shower) 
or a clustering algorithm [4] can be used to combine part of the collimated spray of hadrons 
into jets. Given a valid trigger, other hadrons in the event can now be correlated and analyzed, 
both on the trigger (near) side and on the away side, which defines the range of experimentally 
available correlations (h–h, jet–h, h–jet, . . . ). Note that also analyses of properties of jets such 
as the CMS jet shape analysis [5] are technically a triggered correlation analysis and hence a 
conditional probability — first a jet in the given energy range is found, then given the trigger the 
near side hadron distribution is evaluated. It is thus important to understand the bias imposed by 
the respective trigger condition before interpreting any results.

This is in particular crucial in view of the fact that theoretical computations are often done 
forward in time, i.e. they start with a parton with a defined energy, propagate it through a specified 
medium and obtain a medium-modified hadron shower which can be clustered into a jet. In 
contrast, the experimental procedure clusters a final state to a defined energy and one has to 
conclude backwards in time what the original parton properties might have been. The existence 
of biases implies that there is no meaningful comparison between the two procedures, the only 
way to compare theory with experiment is to compute for all possible initial states and simulate 
how the experimental procedure selects out a particular subgroup of the resulting final states. 
As Fig. 2 shows, this is not an academic issue — results with and without bias are qualitatively 
and quantitatively different. In short, a 100 GeV parton (or any fixed energy parton) is not a 
meaningful representative of an experimentally identified 100 GeV jet.

2. Types of biases

Following the classification in [6], one can distinguish four main types of biases:

D meson near side away side
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forward in time, i.e. they start with a parton with a defined energy, propagate it through a specified 
medium and obtain a medium-modified hadron shower which can be clustered into a jet. In 
contrast, the experimental procedure clusters a final state to a defined energy and one has to 
conclude backwards in time what the original parton properties might have been. The existence 
of biases implies that there is no meaningful comparison between the two procedures, the only 
way to compare theory with experiment is to compute for all possible initial states and simulate 
how the experimental procedure selects out a particular subgroup of the resulting final states. 
As Fig. 2 shows, this is not an academic issue — results with and without bias are qualitatively 
and quantitatively different. In short, a 100 GeV parton (or any fixed energy parton) is not a 
meaningful representative of an experimentally identified 100 GeV jet.

2. Types of biases

Following the classification in [6], one can distinguish four main types of biases:
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for single hadrons or reconstructed jets. These reveal that the interaction with the medium sup-
presses high PT hadrons and jets [1–3], but not much about the underlying mechanism. In order 
to probe the physics more differentially, other observables offer themselves, cf. Fig. 1.
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available correlations (h–h, jet–h, h–jet, . . . ). Note that also analyses of properties of jets such 
as the CMS jet shape analysis [5] are technically a triggered correlation analysis and hence a 
conditional probability — first a jet in the given energy range is found, then given the trigger the 
near side hadron distribution is evaluated. It is thus important to understand the bias imposed by 
the respective trigger condition before interpreting any results.

This is in particular crucial in view of the fact that theoretical computations are often done 
forward in time, i.e. they start with a parton with a defined energy, propagate it through a specified 
medium and obtain a medium-modified hadron shower which can be clustered into a jet. In 
contrast, the experimental procedure clusters a final state to a defined energy and one has to 
conclude backwards in time what the original parton properties might have been. The existence 
of biases implies that there is no meaningful comparison between the two procedures, the only 
way to compare theory with experiment is to compute for all possible initial states and simulate 
how the experimental procedure selects out a particular subgroup of the resulting final states. 
As Fig. 2 shows, this is not an academic issue — results with and without bias are qualitatively 
and quantitatively different. In short, a 100 GeV parton (or any fixed energy parton) is not a 
meaningful representative of an experimentally identified 100 GeV jet.

2. Types of biases

Following the classification in [6], one can distinguish four main types of biases:

D meson near side away side

Salvatore Aiola (Yale University) Heavy-flavour correlations and jets with ALICE 17 / 23



Introduction
Heavy-Flavor Jets

D-Meson – Hadron Correlations
Conclusions

D-Meson – Hadron Correlations
Trigger particle: D meson
Associated particles: charged
tracks
Finite acceptance correction with
event mixing
B feed-down subtracted
Based on FONLL beauty cross
section and correlation templates
from PYTHIA

Fit performed with a double
Gaussian and a constant for the
baseline

T. Renk / Nuclear Physics A 932 (2014) 334–341 335

Fig. 1. Sketch of various ways of observing a hard back-to-back event experimentally

hard process itself will take place without influence by the surrounding medium, leaving the in-
teraction with the medium as a final state effect modifying a perturbatively calculable process. In 
other words, the attenuation pattern of hard partons propagating through the medium can be used 
to do tomography since the initial production rate of these partons is under control. The simplest 
class of measurements focuses on disappearance, such as the nuclear modification factor RAA
for single hadrons or reconstructed jets. These reveal that the interaction with the medium sup-
presses high PT hadrons and jets [1–3], but not much about the underlying mechanism. In order 
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conditional probability — first a jet in the given energy range is found, then given the trigger the 
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the respective trigger condition before interpreting any results.
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conclude backwards in time what the original parton properties might have been. The existence 
of biases implies that there is no meaningful comparison between the two procedures, the only 
way to compare theory with experiment is to compute for all possible initial states and simulate 
how the experimental procedure selects out a particular subgroup of the resulting final states. 
As Fig. 2 shows, this is not an academic issue — results with and without bias are qualitatively 
and quantitatively different. In short, a 100 GeV parton (or any fixed energy parton) is not a 
meaningful representative of an experimentally identified 100 GeV jet.
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Conclusions
Summary of ALICE HF jet and correlation measurements:

1 pT spectra of HF jets with e± (p–Pb) and D0 (pp, p–Pb, Pb–Pb)
2 fragmentation of D0 mesons in jets in pp at

√
s = 7 TeV

(analysis in progress for other systems/energies)
3 D-h correlations in pp (5.02, 7, 13 TeV) and p–Pb (5.02 TeV)

pp in agreement with various MC generators and NLO pQCD

No
√

s dependence of D-h correlation in pp at 5.02, 7, 13 TeV

No evidence of cold nuclear matter effects in p–Pb
First measurement of charm jets in Pb–Pb tagged with fully
reconstructed D0-meson:

RAA ≈ 0.2 for 5 < pT,ch jet < 20 GeV/c
Unique opportunity to study jets with identified charm
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