

Measurements of heavy-flavour correlations and jets with ALICE at the LHC

Salvatore Aiola, on behalf of the ALICE Collaboration

Hard Probes 2018
Aix-Les-Bains, Savoie, France
October 1-5, 2018

Introduction

Heavy-Flavor Jets and Correlations

pp collisions

- HF observables calculable in pQCD down to $p_T \approx 0$ FONLL, GM-VFNS, POWHEG,...
- HF fragmentation

Heavy-Flavor Jets and Correlations

pp collisions

- HF observables calculable in pQCD down to $p_T \approx 0$ FONLL, GM-VFNS, POWHEG,...
- HF fragmentation

Pb-Pb collisions

- Color/mass dependence of in-medium energy loss
- Modification of internal jet sub-structure

Heavy-Flavor Jets and Correlations

pp collisions

- HF observables calculable in pQCD down to $p_T \approx 0$ FONLL, GM-VFNS, POWHEG,...
- HF fragmentation

Pb-Pb collisions

- Color/mass dependence of in-medium energy loss
- Modification of internal jet sub-structure

p-Pb collisions

- Cold nuclear matter effects?
- Collectivity?

- Low-p_T tracking
- Secondary vertex: ITS
- $K/\pi/e^{\pm}$ PID
 - TPC dE/dx
 Time-of-Flight (TOF
 EMCal: E/p

- Low-p_T tracking
- Secondary vertex: ITS
- $K/\pi/e^{\pm}$ PID
 - TPC dE/dx
 Time-of-Flight (TOF
 EMCal: E/p

Pb-Pb Vs_{NN} = 2.76 TeV centrality 0-7.5%

 $D^0 \rightarrow K^*\pi^+$ 1.75 1.8 1.85 1.9 1.95 2 2.05 $M(K\pi) (GeV/c^2)$

m = $1.865 \pm 0.001 \text{ GeV/c}^2$ $\sigma = 0.017 \pm 0.001 \text{ GeV/c}^2$ $S(3\sigma) = 8492 \pm 305$ $S/B(3\sigma) = 0.13$

10⁶

105

- Low-p_T tracking
- Secondary vertex: ITS
- K/π/e[±] PID
 - TPC dE/dxTime-of-Flight (TOF)EMCal: E/p

Pb-Pb Vs_{NN} = 2.76 TeV centrality 0-7.5%

 $D^0 \rightarrow K^*\pi^+$ 1.75 1.8 1.85 1.9 1.95 2 2.05 $M(K\pi) (GeV/c^2)$

m = $1.865 \pm 0.001 \text{ GeV/c}^2$ $\sigma = 0.017 \pm 0.001 \text{ GeV/c}^2$ $S(3\sigma) = 8492 \pm 305$ $S/B(3\sigma) = 0.13$

10⁶

105

- Low-p_T tracking
- Secondary vertex: ITS
- $K/\pi/e^{\pm}$ PID
 - TPC dE/dx
 - Time-of-Flight (TOF)
 - EMCal: E/p

p (GeV/c)

m = $1.865 \pm 0.001 \text{ GeV/c}^2$ $\sigma = 0.017 \pm 0.001 \text{ GeV/c}^2$ $S(3\sigma) = 8492 \pm 305$ $S/B(3\sigma) = 0.13$

D⁰→K'π⁺

M(Kπ) (GeV/c²)

- Low-p_T tracking
- Secondary vertex: ITS
- $K/\pi/e^{\pm}$ PID
 - TPC dE/dx
 - Time-of-Flight (TOF)
 - EMCal: E/p

- Low-p_T tracking
- Secondary vertex: ITS
- $K/\pi/e^{\pm}$ PID
 - TPC dE/dx
 - Time-of-Flight (TOF)
 - ▶ EMCal: E/p

- Low-p_T tracking
- Secondary vertex: ITS
- $K/\pi/e^{\pm}$ PID
 - TPC dE/dx
 - Time-of-Flight (TOF)
 - EMCal: E/p

HFe Jet Tagging D⁰-Meson Jet Tagging

Heavy-Flavor Jets

- HF electrons: c,b \rightarrow D,B \rightarrow e $^{\pm}$
 - TPC dE/dx + EMCal E/p
 - p_{T,e} > 4 GeV/c
- Jets
 - Track-based
 - anti-k_T, R = 0.3
 - $p_{\rm T,ch\,jet} > 10~{\rm GeV}/c$
- Jets containing identified electrons among their constituents
- Subtract jets containing non-HF (photonic) electrons (inv. mass)
- Corrections
 - Residual contamination from photonic electrons
 - Reconstruction efficiency
 - Detector $p_{\mathrm{T,ch}\,\mathrm{iet}}$ resolution $\approx 17-20\%$ (SVD unfolding)

- HF electrons: c,b \rightarrow D,B \rightarrow e $^{\pm}$
 - TPC dE/dx + EMCal E/p
 - p_{T,e} > 4 GeV/c
- Jets
 - Track-based
 - anti- $k_{\rm T}$, R = 0.3
 - p_{T,ch jet} > 10 GeV/c
- Jets containing identified electrons among their constituents
- Subtract jets containing non-HF (photonic) electrons (inv. mass)
- Corrections
 - Residual contamination from photonic electrons
 - Reconstruction efficiency
 - Detector $p_{\mathrm{T.ch~ict}}$ resolution $\approx 17-20\%$ (SVD unfolding)

- HF electrons: c,b \rightarrow D,B \rightarrow e $^{\pm}$
 - TPC dE/dx + EMCal E/p
 - p_{T,e} > 4 GeV/c
- Jets
 - Track-based
 - anti- $k_{\rm T}$, R = 0.3
 - $p_{\rm T,ch\,jet} > 10~{\rm GeV}/c$
- Jets containing identified electrons among their constituents
- Subtract jets containing non-HF (photonic) electrons (inv. mass)
- Corrections
 - Residual contamination from photonic electrons
 - Reconstruction efficiency
 - Detector $p_{\rm T.ch\,ict}$ resolution $\approx 17-20\%$ (SVD unfolding)

- HF electrons: c,b \rightarrow D,B \rightarrow e $^{\pm}$
 - TPC dE/dx + EMCal E/p
 - $p_{T,e} > 4 \text{ GeV/}c$
- Jets
 - Track-based
 - anti- $k_{\rm T}$, R = 0.3
 - $p_{\rm T,ch\,jet} > 10~{\rm GeV}/c$
- Jets containing identified electrons among their constituents
- Subtract jets containing non-HF (photonic) electrons (inv. mass)
- Corrections
 - Residual contamination from photonic electrons
 - Reconstruction efficiency
 - Detector $p_{\rm T.ch\,iet}$ resolution $\approx 17-20\%$ (SVD unfolding)

- HF electrons: c,b→D,B→e[±]
 - TPC dE/dx + EMCal E/p
 - $p_{T,e} > 4 \text{ GeV/}c$
- Jets
 - Track-based
 - anti- $k_{\rm T}$, R = 0.3
 - $p_{\rm T,ch\,jet} > 10~{\rm GeV}/c$

- Jets containing identified electrons among their constituents
- Subtract jets containing non-HF (photonic) electrons (inv. mass)
- Corrections
 - Residual contamination from photonic electrons
 - Reconstruction efficiency
 - Detector $p_{\rm T,ch\,jet}$ resolution $\approx 17-20\%$ (SVD unfolding)

- HF electrons: c,b→D,B→e[±]
 - TPC dE/dx + EMCal E/p
 - $p_{T,e} > 4 \text{ GeV/}c$
- Jets
 - Track-based
 - anti- $k_{\rm T}$, R = 0.3
 - $p_{\rm T,ch\,jet} > 10~{\rm GeV}/c$

- Jets containing identified electrons among their constituents
- Subtract jets containing non-HF (photonic) electrons (inv. mass)
- Corrections
 - Residual contamination from photonic electrons
 - Reconstruction efficiency
 - Detector $p_{T, \text{ch jet}}$ resolution $\approx 17 20\%$ (SVD unfolding)

- HF electrons: c,b→D,B→e[±]
 - TPC dE/dx + EMCal E/p
 - $p_{T,e} > 4 \text{ GeV/}c$
- Jets
 - Track-based
 - anti- $k_{\rm T}$, R = 0.3
 - $p_{\rm T,ch\,jet} > 10~{\rm GeV}/c$

- Jets containing identified electrons among their constituents
- Subtract jets containing non-HF (photonic) electrons (inv. mass)
- Corrections
 - Residual contamination from photonic electrons
 - Reconstruction efficiency
 - Detector $p_{T, {
 m ch}\, {
 m jet}}$ resolution pprox 17 20% (SVD unfolding)

HFe Jets in p–Pb at $\sqrt{s_{\rm NN}} = 5.02$ TeV (NEW)

Includes HFe from beauty and charm

Agreement
with NLO pQCD
POWHEG+PYTHIA8
simulation

No evidence of CNM effects

- D⁰ Meson
 - Decay channel: ${
 m D^0} o {
 m K^-}\pi^+$, ${
 m BR} = 3.89\%$ [PDG PRD 98 (2018) 030001]
 - TPC dE/dx + TOF PID for K/ π discrimination
 - Topological selections (secondary vertex)
 - p_{T,D} > 3 GeV/c
- Jet finding
 - D⁰-meson candidates replace the decay products in the jet finding
 - Track-based
 - anti- k_T , R = 0.3, 0.4
 - $p_{T,ch\,jet} > 5 \text{ GeV}/c$

- D⁰ Meson
 - Decay channel: ${
 m D^0} o {
 m K^-}\pi^+$, ${
 m BR} = 3.89\%$ [PDG PRD 98 (2018) 030001]
 - TPC dE/dx + TOF PID for K/ π discrimination
 - Topological selections (secondary vertex)
 - p_{T,D} > 3 GeV/c
- Jet finding
 - D⁰-meson candidates replace the decay products in the jet finding
 - Track-based
 - anti- k_T , R = 0.3, 0.4
 - $p_{T,ch\,jet} > 5 \text{ GeV/}c$

- Invariant mass analysis to extract signal in bins of p_{T.D}
- Identify signal-region and side-bands

Subtract
side-band
from
signal-region
distributions
to obtain
the raw yield

D^0 Jets in pp at $\sqrt{s} = 5.02$ TeV (NEW)

Corrections

- Reconstruction efficiency
- B Feed-Down
 POWHEG-based
- Detector resolution
 Bayesian unfolding

Agreement
with NLO pQCD
POWHEG+PYTHIA6
simulation

D^0 Jets in pp and p-Pb at $\sqrt{s_{\rm NN}}=5.02$ TeV (NEW)

Subtraction of the average background density from the reconstructed $p_{T,ch\,jet}$

$$oldsymbol{
ho}_{ ext{T,ch\,jet}}^{ ext{raw}} = oldsymbol{
ho}_{ ext{T,ch\,jet}}^{ ext{reco}} - oldsymbol{A}_{ ext{jet}} imes
ho$$
PLB 659 (2008) 119, JHEP 08 (2012) 130

- Reconstruction efficiency
- B Feed-Down subtraction POWHEG-based
- Detector resolution + background fluctuations
 Bayesian unfolding

$R_{\rm pPb}$ of ${\rm D^0}$ Jets, $\sqrt{s_{\rm NN}}=5.02$ TeV (NEW)

 $R_{\rm pPb} \approx 1$ within uncertainties

Fragmentation of D⁰-Meson Jets in pp at $\sqrt{s} = 7$ TeV $5 < p_{\text{T,ch iet}} < 15 \text{ GeV/}c$

Momentum fraction carried by the D⁰ meson in the direction of the jet axis

$$extstyle extstyle z_{||}^ ext{ch} = rac{ec{
ho}_ ext{jet}^ ext{ch} \cdot ec{
ho}_ ext{D}}{ec{
ho}_ ext{jet}^ ext{ch} \cdot ec{
ho}_ ext{jet}^ ext{ch}}$$

"Good agreement with Herwig++ 7 and PYTHIA6/8 generators

Fragmentation of D⁰-Meson Jets in pp at $\sqrt{s} = 7$ TeV

Fragmentation of D⁰-Meson Jets in pp at $\sqrt{s} = 7$ TeV 15 < $p_{\text{T,ch iet}} < 30$ GeV/c

$R_{\rm AA}$ of D⁰-Meson Jets, Pb–Pb at $\sqrt{s_{ m NN}}=5.02~{ m TeV}$

Fully corrected, including UE background fluctuations as in JHEP 30 (2014) 013

$R_{\rm AA}$ of D⁰-Meson Jets, Pb–Pb at $\sqrt{s_{\rm NN}}=5.02$ TeV

 $m{R_{AA}} \sim m{0.2}$ for 5 < $p_{\mathrm{T,ch\,jet}} <$ 20 GeV/c Similar trend of inclusive jets

$R_{\rm AA}$ of D⁰-Meson Jets, Pb–Pb at $\sqrt{s_{\rm NN}}=5.02$ TeV

 $m{R_{
m AA}} \sim m{0.2}$ for $5 < p_{
m T, ch\, jet} < 20~{
m GeV}/c$ Similar suppression of D mesons

Introduction
Heavy-Flavor Jets
D-Meson – Hadron Correlations
Conclusions

D-Meson - Hadron Correlations

D-Meson – Hadron Correlations

Trigger particle: D meson

Associated particles: charged tracks

- Finite acceptance correction with event mixing
- B feed-down subtracted
 Based on FONLL beauty cross
 section and correlation templates
 from PYTHIA
- Fit performed with a double Gaussian and a constant for the baseline

D-Meson – Hadron Correlations

Trigger particle: D meson

Associated particles: charged tracks

- Finite acceptance correction with event mixing
- B feed-down subtracted
 Based on FONLL beauty cross
 section and correlation templates
 from PYTHIA
- Fit performed with a double Gaussian and a constant for the baseline

D-Meson – Hadron Correlations

Trigger particle: D meson

Associated particles: charged tracks

- Finite acceptance correction with event mixing
- B feed-down subtracted
 Based on FONLL beauty cross
 section and correlation templates
 from PYTHIA
- Fit performed with a double Gaussian and a constant for the baseline

D-Meson – Hadron Correlations

- Trigger particle: D meson
- Associated particles: charged tracks
- Finite acceptance correction with event mixing
- B feed-down subtracted Based on FONLL beauty cross section and correlation templates from PYTHIA
- Fit performed with a double Gaussian and a constant for the baseline

D-h Correlations: pp at $\sqrt{s} = 5.02$ vs. models (NEW)

D-h Correlations: pp at $\sqrt{s} = 5.02$ vs. models (NEW)

- Yield and width vs. assoc. track p_T → direct investigation of charm jet fragmentation
- Agreement with PYTHIA6/8 and POWHEG+PYTHIA6
- Well under control → use it to investigate cold/hot nuclear effects

Away-side parameters in backup

D-h Correlations: pp at $\sqrt{s} = 5.02$, 7, 13 TeV (NEW)

No \sqrt{s} dependence within uncertainties

D-h Correlations: pp vs. p–Pb at $\sqrt{s_{\rm NN}} = 5.02$ (NEW)

No evidence of CNM effects

Away-side parameters in backup

Introduction
Heavy-Flavor Jets
D-Meson – Hadron Correlations
Conclusions

- Summary of ALICE HF jet and correlation measurements:
 - \bigcirc $p_{\rm T}$ spectra of **HF jets** with e^{\pm} (p–Pb) and ${\rm D^0}$ (pp, p–Pb, Pb–Pb)
 - **? fragmentation** of D^0 mesons in jets in pp at $\sqrt{s} = 7$ TeV (analysis in progress for other systems/energies)
 - 3 D-h correlations in pp (5.02, 7, 13 TeV) and p-Pb (5.02 TeV)
- pp in agreement with various MC generators and NLO pQCD
- No \sqrt{s} dependence of D-h correlation in pp at 5.02, 7, 13 TeV
- No evidence of cold nuclear matter effects in p-Pb
- First measurement of charm jets in Pb–Pb tagged with fully reconstructed D⁰-meson:
 - $R_{\rm AA} \approx 0.2$ for $5 < p_{\rm T.ch\,iet} < 20$ GeV/c
 - Unique opportunity to study jets with identified charm

- Summary of ALICE HF jet and correlation measurements:
 - \bullet p_T spectra of **HF jets** with e^{\pm} (p–Pb) and D⁰ (pp, p–Pb, Pb–Pb)
 - **? fragmentation** of D^0 mesons in jets in pp at $\sqrt{s} = 7$ TeV (analysis in progress for other systems/energies)
 - 3 D-h correlations in pp (5.02, 7, 13 TeV) and p-Pb (5.02 TeV)
- pp in agreement with various MC generators and NLO pQCD
- No \sqrt{s} dependence of D-h correlation in pp at 5.02. 7. 13 TeV
- No evidence of cold nuclear matter effects in p-Pb
- First measurement of charm jets in Pb–Pb tagged with fully reconstructed D⁰-meson:
 - $R_{\rm AA} \approx 0.2$ for $5 < p_{\rm T,ch\,jet} < 20$ GeV/c
 - Unique opportunity to study jets with identified charm

- Summary of ALICE HF jet and correlation measurements:
 - \bullet p_T spectra of **HF jets** with e^{\pm} (p–Pb) and D^0 (pp, p–Pb, Pb–Pb)
 - **g** fragmentation of D^0 mesons in jets in pp at $\sqrt{s} = 7$ TeV (analysis in progress for other systems/energies)
 - 3 D-h correlations in pp (5.02, 7, 13 TeV) and p-Pb (5.02 TeV)
- pp in agreement with various MC generators and NLO pQCD
- No \sqrt{s} dependence of D-h correlation in pp at 5.02, 7, 13 TeV
- No evidence of cold nuclear matter effects in p-Pb
- First measurement of charm jets in Pb–Pb tagged with fully reconstructed D⁰-meson:
 - $R_{\rm AA} \approx 0.2$ for $5 < p_{\rm T.ch~iet} < 20$ GeV/c
 - Unique opportunity to study jets with identified charm

- Summary of ALICE HF jet and correlation measurements:
 - \bigcirc $p_{\rm T}$ spectra of **HF jets** with e^{\pm} (p–Pb) and ${\rm D^0}$ (pp, p–Pb, Pb–Pb)
 - **g** fragmentation of D^0 mesons in jets in pp at $\sqrt{s} = 7$ TeV (analysis in progress for other systems/energies)
 - 3 D-h correlations in pp (5.02, 7, 13 TeV) and p-Pb (5.02 TeV)
- pp in agreement with various MC generators and NLO pQCD
- No \sqrt{s} dependence of D-h correlation in pp at 5.02, 7, 13 TeV
- No evidence of cold nuclear matter effects in p-Pb
- First measurement of charm jets in Pb—Pb tagged with fully reconstructed D⁰-meson:
 - $R_{\rm AA} \approx 0.2$ for $5 < p_{\rm T,ch\,jet} < 20$ GeV/c
 - Unique opportunity to study jets with identified charm

- Summary of ALICE HF jet and correlation measurements:
 - \bullet p_T spectra of **HF jets** with e^{\pm} (p–Pb) and D⁰ (pp, p–Pb, Pb–Pb)
 - **g** fragmentation of D^0 mesons in jets in pp at $\sqrt{s} = 7$ TeV (analysis in progress for other systems/energies)
 - 3 D-h correlations in pp (5.02, 7, 13 TeV) and p-Pb (5.02 TeV)
- pp in agreement with various MC generators and NLO pQCD
- No \sqrt{s} dependence of D-h correlation in pp at 5.02, 7, 13 TeV
- No evidence of cold nuclear matter effects in p-Pb
- First measurement of charm jets in Pb–Pb tagged with fully reconstructed D⁰-meson:
 - $R_{\rm AA} \approx 0.2$ for $5 < p_{\rm T,ch\,jet} < 20$ GeV/c
 - Unique opportunity to study jets with identified charm

Introduction Heavy-Flavor Jets D-Meson – Hadron Correlations Conclusions

D-h Correlations (away side)

D-h Correlations: pp vs. p-Pb (away side)

No evidence of CNM effects

Reconstruction Efficiency of D⁰ Jets

$R_{\rm AA}$ and $R_{\rm pPb}$ of ${\rm D^0}$ Jets

