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The goal

To fully integrate jets into the EPOS3 model.
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EPOS initial state
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Parton-Based Gribov-Regge
Theory

H. J. Drescher, M. Hladik, S. Ostapchenko,

T. Pierog, K. Werner, Phys. Rept. 350, 93,

2001

Pomeron = parton ladder,
treated as a kinky string.

Spacelike cascades including Born process in the EPOS IS provide partons with all
pT which are further separated into core and corona.
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Hydrodynamic background

For this study and in order to explore the effects in a clear way:

Averaged(smooth) hydrodynamic initial state compartible with EPOS3.

Equation of state: Laine & Schroeder ’06, compartible with s95p-v1.2 EoS.
M. Laine, Y. Schroeder Phys. Rev. D73 (2006) 085009

3+1 dimensional viscous hydrodynamics:

T µν = (ε + p)uµ uν − p ·gµν +π
µν

∂;ν T µν = 0, ∂;ν Nν = 0

< uγ
∂;γ π

µν >=−
πµν −π

µν

NS

τπ

− 4
3

π
µν

∂;γ uγ

solved with vHLLE code, Comput. Phys. Commun. 185 (2014), 3016
https://github.com/yukarpenko/vhlle
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Time-like parton shower

Cascade made by Martin Rohrmoser:

Monte Carlo simulation of DGLAP equations for a parton shower between
virtuality scales Q↑ (from Born process in EPOS) and Q↓ = 0.6 GeV.

Radiative energy loss (virtuality gain) a là YaJEM:
dQ2

dt = q̂R(t,x), q̂R(t,x) = 210
1+53·T T 3(t,x)

Collisional energy loss: longitudinal drag
d p‖
dt =−A(t,x), A = q̂R

0.09+0.715·T (t,x)/0.16

Mean lifetime of a parton between the branchings is ∆t = E/Q2.

Caveats

No hadronization model plugged in yet.

No jet reconstruction algorithm plugged in yet.

⇒ I do not draw any comparison to experimental data.
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Jet-medium interaction

Fluid and jet evolutions run in parallel:

fluid
timestep

→ jet timestep → fluid
timestep

→ . . .

The temperature and flow velocity are taken from
the hydrodynamic evolution

xi-2 xi-1 xi xi+1

ti-1

ti

ti+1

Jet partons lose energy/momentum in the local rest frame (LRF) of the fluid:

(global frame)
boost to LRF

→
solve
dQ2

dt = q̂R(t,x),
d p‖
dt =−A(t,x)

→ boost back to
global frame

→ calculate lost
energy/momentum

Once the energy of a parton in the fluid rest frame drops below α ·T (t,x),
the parton is melted into the fluid: its energy/momentum is distributed
around nearby fluid cells, and the parton is removed from the parton cacsade.

The fluid acquires the lost energy/momentum (absorption) via the source
terms: ∂;ν T µν = Jµ
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Results: jet pT
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Results: jet pT
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Results: jet pT
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Results: jet pT
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Jet mass
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M2 =

(
∑

i∈ jet
pµ

i

)2

Jet mass distribution at high M is very sensitive to the melting scenario.

Turning the absorption on/off does not make difference for the jet itself
(which is naively expectable).

Iurii Karpenko, Jet structure in integrated EPOS3-HQ approach 8/18



Angular structure of a jet
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(more secondary splittings)
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grooming at small ρ and 2)
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Parton melting kills the
peak around ≈ π/2

Switching the absorption off
does not influence the jet
structure
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Effects of radial flow

The structure around ρ ≈ π/2 is an effect of radial flow.

Effect for dN/dr
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Switching the transverse expansion off kills the peak in the ρ distribution.

Influence on the pT distribution is tiny: the main effect of radial flow
(switched off here) is faster system cooling, and so smaller energy loss.
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Other effects

larger initial jet energy selection

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
r [rad]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

d
N
/d
r

initial E> 25 GeV

angular structure, c=0-5% PbPb at 
√
s = 2. 76 TeV

vacuum
rad+coll
rad+coll, vT = 0

different parton melting criterion

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
r [rad]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

d
N
/d
r

initial E> 25 GeV

angular structure, c=0-5% PbPb at 
√
s = 2. 76 TeV

vacuum
rad+coll
rad+coll+melt E<3T
rad+coll+melt E<T

cut on initial Ejet: less differences at small r, the large r peak survives.

Parton melting at E < 3T destroys the peak, however milder melting criterion
E < T preserves it.
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Effects of radial flow (2)

Space trajectories of 4 randomly chosen jets.

No medium interaction:
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Effects of radial flow (2)

Space trajectories of 4 randomly chosen jets.

radiative+collisional energy loss, no melting:

2

0

2

4

6

8

y 
[fm

]

0 1

0 1 2 3 4 5 6 7 8 9
x [fm]

2

0

2

4

6

8

y 
[fm

]

2

0 1 2 3 4 5 6 7 8 9
x [fm]

3

0.8

1.6

2.4

3.2

4.0

4.8

5.6

6.4

7.2

8.0
time [fm/c]

Iurii Karpenko, Jet structure in integrated EPOS3-HQ approach 12/18



Back reaction on the fluid
Snapshots of the x component of fluid velocity at different times.
On this slide: fluid with no absorption (benchmark/to guide the eye).
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Back reaction on the fluid
Snapshots of the x component of fluid velocity at different times.
On this slide: jet energy/momentum absorption at early times.
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Back reaction on the fluid
Snapshots of the x component of fluid velocity at different times.
On this slide: Hydro smears out the perturbations at late times.

15
10

5
0
5

10
15

y 
[fm

]

τ= 5.0 τ= 6.0

20 10 0 10 20
x [fm]

15
10

5
0
5

10
15

y 
[fm

]

τ= 7.0

20 10 0 10 20
x [fm]

τ= 8.0

Iurii Karpenko, Jet structure in integrated EPOS3-HQ approach 13/18



Corresponding aziumthal distributions of hydro-born hadrons (pions)

Cooper-Frye prescription at ε = εsw = 0.5 GeV/fm3:

p0 d3ni

d3 p
= ∑ f (x, p)pµ

∆σµ , f (x, p) = feq ·
(

1+(1∓ feq)
pµ pν πµν

2T 2(ε + p)

)
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angular distributions of thermal pions In hydrodynamics:

low-pT hadrons are
dominantly produced at late
times

high-pT hadrons are
dominantly produced at
early times from the
periphery
⇓
high-pT hadrons are
sensitive to the
perturbations in the
medium
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Mach cones!

A simplified setup: few most energetic jet partons with initial Q > 20 GeV.
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A more realistic case at LHC energy: jet partons with initial Q > 2 GeV.
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Back reaction on the fluid (2)

Corresponding temperature profiles at different times:
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Summary
We have presented a first calculation where jets and bulk hydrodynamic evolution
run in parallel mode.

Initial conditions and initial jet partons: EPOS

Timelike parton cascade by Martin Rohrmoser

3+1 dimensional viscous hydrodynamics for the medium

Bi-directional interaction between the two

Some lessons:

Radial flow causes a spread of a fraction of jet energy
to a relatively large angle ≈ π/2.

Back reaction of the jet energy loss to the fluid has
a negligible effect for the jet itself (no jet recoil here!).

However, the energy absorption causes perturbations in the hydro evolution
which are strongest at early times and therefore influence thermal hadron
production at “large thermal” momenta > 1−1.5 GeV.

→ This influences the correlations of high-pT jet hadrons with their
pT > 1.5 GeV “thermal” colleagues.

Obviously, work in progress.
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