

Measurements of strange and non-strange charm production in PbPb collisions at 5.02 TeV with the CMS detector

Cheng-Chieh Peng
Purdue University
for the CMS Collaboration

Hard Probes 2018

Motivation

- Heavy quarks produced early, experience the full evolution of the medium
- $D^0 R_{AA}$: nuclear modification factor
 - Flavor dependent energy loss
 - Dead cone effect (Phys. Lett. B 519 (2001) 199)

- $\mathsf{D}^{\mathsf{0}} \, v_n$ harmonics in PbPb :
 - \triangleright At low p_T , the degree of medium thermalization
 - \blacktriangleright At high p_T , the path length dependence of energy loss
- D^0 elliptic flow v_2 in high multiplicity pPb
 - Evidence of QGP in small system?
 - ➤ Heavy flavor hydrodynamic flow?

D⁰ Meson Reconstruction & Selection

• $D^0 \rightarrow K^- \pi^+$, BR = 3.89%, $c\tau \simeq 120 \mu m$

- D⁰ candidates :
 - pairing two charged tracks
 - kinematic fitter

- D⁰ candidates selection (TMVA Rectangular Cuts)
 - Pointing angle α < 0.12
 - 3D decay length significance
 - D⁰ candidate vertex probability
 - Distance of Closet Approach (DCA) < 0.008 cm

D^o Signal Extraction by Invariant Mass Fit

D⁰ invariant mass distributions are fitted by

- Double Gaussian (Signal)
- 3rd order polynomial (Combinatorial)

• Single Gaussian (K- π swapped. No PID. Candidates with wrong mass

assignment on tracks)

PLB **782**,474(2018)

Extract Prompt Fraction from Data

- D⁰ in data is a mixture of prompt and non-prompt D⁰
- Fit DCA of data with prompt and non-prompt D⁰ DCA MC templates

PLB **782**,474(2018)

D^0 R_{AA} and Comparison with Model Calculations

- Charm quarks lose a significant fraction of energy in the QGP medium
- R_{AA} minimal near $p_T \sim 10$ GeV/c and then increases
- At high p_T , both pQCD and AdS/CFT predictions reasonably agree with R_{AA} results
- At low p_T , PHSD with shadowing describes data better

PLB **782**,474(2018)

R_{AA} Zoo Plot and Comparison

- At low p_T , a hint of smaller suppression of D^0 and non-prompt J/ψ than charged particles
- At high p_T , the D^0 R_{AA} is similar to charged particles R_{AA}
- The non-prompt J/ψ appear to be less suppressed than the D^0 for p_T smaller than \sim 15 GeV

JHEP **04**(2017)39

PRL **119**,152301(2017)

PLB **782**,474(2018)

EPJC **78** (2018) 509

$\mathsf{D}^0 \, v_n$ in PbPb collisions at 5.02 TeV

 v_n obtained by scalar product method

(Luzum, Ollitrault PRC 87 (2013), 044907)

 Simultaneous fit on mass distribution and v_n vs. mass

$$v_n^{S+B}(m) = \alpha(m)v_n^S(m) + [1 - \alpha(m)]v_n^B(m)$$

$$\alpha(m) = \frac{Sig(m) + Swap(m)}{Sig(m) + Swap(m) + Bkgd(m)}$$

PRL **120**,202301(2018)

Prompt D 0 v_2 Result

- Positive prompt $D^0 v_2$ is observed:
 - Low p_T : charm quark collective motion
 - High p_T : path length dependence of energy loss
- Similar p_T dependence to charged particle
- At centrality 10-30% and 30-50% , the $v_2(\mathsf{D}^0) < v_2(\mathsf{charged} \; \mathsf{particle})$
 - Mass ordering or other effect?

PRL **120**,202301(2018)

Prompt D 0 v_3 Result

- Low $p_T : v_3$ (prompt D⁰) >0 ; Hight $p_T : v_3$ (prompt D⁰) \approx 0
- Similar p_T dependence to charged particle

PRL **120**,202301(2018)

Prompt D 0 v_3 Result

- Low $p_T : v_3$ (prompt D⁰) >0 ; Hight $p_T : v_3$ (prompt D⁰) \approx 0
- Similar p_T dependence to charged particle
- Little centrality dependence
 - Indicate a constant initial geometry
- v_2 and v_3 results provide constrain on models

PRL **120**,202301(2018)

$\mathsf{D}^{\mathsf{0}} \, v_{\mathsf{2}}$ in pPb Collisions at 8.16 TeV

- Two-particle correlation method to extract v_2
 - Correlate D^0 and charged hadrons $(|\Delta \eta| \text{gap} = 1)$
 - Perform Fourier fits the two particle correlation

$$- v_2^{D^0}(p_T) = \frac{v_{2\Delta}(p_T^{D^0}, p_T^{assoc})}{\sqrt{v_{2\Delta}(p_T^{assoc}, p_T^{assoc})}}$$

- $D^0 v_2^{sub}$, to reduce the non-flow contributions
 - subtracting the $V_{2\Delta}$ in low multiplicity (Ntrk <35)
- Simultaneous fit on mass distribution and v_2 vs. mass

D^0 Meson and Light Hadrons v_2 vs p_T

• Significant $D^0 v_2$ have been observed in high multiplicity pPb

• $v_2^{D^0} < v_2^{light \ hadrons}$

D^0 Meson v_2 vs p_T and PbPb Collisions

- $D^0 v_2^{pPb} < v_2^{PbPb}$ for a given p_T
- Similar mass ordering for pPb and PbPb

D^0 NCQ Scaling v_2 in pPb and PbPb

- Number of constituent quarks (NCQ) scaling is motivated by quark coalescence model
- In pPb, $D^0 v_2/n_q$ is smaller than strange hadrons for $KE_T/n_q < 2$
- In PbPb, $D^0 v_2/n_q$ follow the same trend as other particle species

Summary

• $D^0 R_{AA}$ at 5.02 TeV PbPb

- Strong suppression of $D^0 R_{AA}$
- $R_{AA}(D^0) \sim R_{AA}(h^{\pm})$ at high p_T
- $R_{AA}(D^0) > R_{AA}(h^{\pm})$ at low p_T

• $D^0 v_2$ at 8.16 TeV pPb

- Significant v_2 in high multiplicity events
- $v_2(D^0) < v_2$ (strange hadrons)

Back Up

The CMS Trigger and Data Sets

Data sets

- LHC Run II 2015 pp and PbPb at $\sqrt{s_{NN}}$ = 5.02 TeV and 2016 pPb data at $\sqrt{s_{NN}}$ = 8.16 TeV
- ullet Minimum bias sample for $p_T < 20$ GeV/c and triggered samples for $p_T > 20$ GeV/c
- Dedicated HLT D meson filters to enhance the statistics of very high p_T D mesons
- High multiplicity trigger to select high multiplicity pPb events comparable to peripheral PbPb

Triggering system

Hardware Level 1
Jet Trigger Selections

Level 1 (L1) jet algorithm with online background subtraction

Track Selections in Software Triggers

Track seed p_T cut applied: $p_T > 2$ GeV/c for pp/pPb $p_T > 8$ GeV/c for PbPb

 D^0 Selections

 D^0 online reconstruction Loose selections based on D^0 vertex displacement

Scalar Product Method

- Scaling factor from 3 sub events
- \triangleright Large η gap applied ($|\Delta\eta| > 3.0$)
- $> v_n \{SP\}$, non-ambiguous measure of $\sqrt{\langle v_n^2 \rangle}$

Luzum, Ollitrault PRC 87 (2013), 044907

19

p_⊤ for tracker

D⁰ v2 in pPb Collisions at 8.16 TeV

Fourier series describing the azimuthal anisotropy of particle spectrum

$$\frac{dN}{d\phi} \propto 1 + \sum 2v_n(p_T, \eta) cos[n(\phi - \psi_n)]$$

- Two-particle correlation method to extract $oldsymbol{v}_2$
 - Correlate D^0 and charged hadrons ($\Delta \eta$ gap = 1)
 - Perform Fourier fits the two particle correlation

distribution for D^0 to extract $V_{2\Delta}(p_T^{D^0}, p_T^{assoc})$

- $D^0 v_2(p_T)$ can be obtain by :

$$v_2^{D^0}(p_T) = \frac{V_{2\Delta}(p_T^{D^0}, p_T^{assoc})}{\sqrt{V_{2\Delta}(p_T^{assoc}, p_T^{assoc})}}$$

CMS HIN-17-003

Phys. Rev. Lett **121**,082301(2018)

