Measurements of strange and non-strange charm production in PbPb collisions at 5.02 TeV with the CMS detector Cheng-Chieh Peng Purdue University for the CMS Collaboration Hard Probes 2018 #### Motivation - Heavy quarks produced early, experience the full evolution of the medium - $D^0 R_{AA}$: nuclear modification factor - Flavor dependent energy loss - Dead cone effect (Phys. Lett. B 519 (2001) 199) - $\mathsf{D}^{\mathsf{0}} \, v_n$ harmonics in PbPb : - \triangleright At low p_T , the degree of medium thermalization - \blacktriangleright At high p_T , the path length dependence of energy loss - D^0 elliptic flow v_2 in high multiplicity pPb - Evidence of QGP in small system? - ➤ Heavy flavor hydrodynamic flow? #### D⁰ Meson Reconstruction & Selection • $D^0 \rightarrow K^- \pi^+$, BR = 3.89%, $c\tau \simeq 120 \mu m$ - D⁰ candidates : - pairing two charged tracks - kinematic fitter - D⁰ candidates selection (TMVA Rectangular Cuts) - Pointing angle α < 0.12 - 3D decay length significance - D⁰ candidate vertex probability - Distance of Closet Approach (DCA) < 0.008 cm ### D^o Signal Extraction by Invariant Mass Fit #### D⁰ invariant mass distributions are fitted by - Double Gaussian (Signal) - 3rd order polynomial (Combinatorial) • Single Gaussian (K- π swapped. No PID. Candidates with wrong mass assignment on tracks) PLB **782**,474(2018) #### Extract Prompt Fraction from Data - D⁰ in data is a mixture of prompt and non-prompt D⁰ - Fit DCA of data with prompt and non-prompt D⁰ DCA MC templates PLB **782**,474(2018) # D^0 R_{AA} and Comparison with Model Calculations - Charm quarks lose a significant fraction of energy in the QGP medium - R_{AA} minimal near $p_T \sim 10$ GeV/c and then increases - At high p_T , both pQCD and AdS/CFT predictions reasonably agree with R_{AA} results - At low p_T , PHSD with shadowing describes data better PLB **782**,474(2018) #### R_{AA} Zoo Plot and Comparison - At low p_T , a hint of smaller suppression of D^0 and non-prompt J/ψ than charged particles - At high p_T , the D^0 R_{AA} is similar to charged particles R_{AA} - The non-prompt J/ψ appear to be less suppressed than the D^0 for p_T smaller than \sim 15 GeV JHEP **04**(2017)39 PRL **119**,152301(2017) PLB **782**,474(2018) EPJC **78** (2018) 509 #### $\mathsf{D}^0 \, v_n$ in PbPb collisions at 5.02 TeV v_n obtained by scalar product method (Luzum, Ollitrault PRC 87 (2013), 044907) Simultaneous fit on mass distribution and v_n vs. mass $$v_n^{S+B}(m) = \alpha(m)v_n^S(m) + [1 - \alpha(m)]v_n^B(m)$$ $$\alpha(m) = \frac{Sig(m) + Swap(m)}{Sig(m) + Swap(m) + Bkgd(m)}$$ PRL **120**,202301(2018) # Prompt D 0 v_2 Result - Positive prompt $D^0 v_2$ is observed: - Low p_T : charm quark collective motion - High p_T : path length dependence of energy loss - Similar p_T dependence to charged particle - At centrality 10-30% and 30-50% , the $v_2(\mathsf{D}^0) < v_2(\mathsf{charged} \; \mathsf{particle})$ - Mass ordering or other effect? PRL **120**,202301(2018) ### Prompt D 0 v_3 Result - Low $p_T : v_3$ (prompt D⁰) >0 ; Hight $p_T : v_3$ (prompt D⁰) \approx 0 - Similar p_T dependence to charged particle PRL **120**,202301(2018) # Prompt D 0 v_3 Result - Low $p_T : v_3$ (prompt D⁰) >0 ; Hight $p_T : v_3$ (prompt D⁰) \approx 0 - Similar p_T dependence to charged particle - Little centrality dependence - Indicate a constant initial geometry - v_2 and v_3 results provide constrain on models PRL **120**,202301(2018) ### $\mathsf{D}^{\mathsf{0}} \, v_{\mathsf{2}}$ in pPb Collisions at 8.16 TeV - Two-particle correlation method to extract v_2 - Correlate D^0 and charged hadrons $(|\Delta \eta| \text{gap} = 1)$ - Perform Fourier fits the two particle correlation $$- v_2^{D^0}(p_T) = \frac{v_{2\Delta}(p_T^{D^0}, p_T^{assoc})}{\sqrt{v_{2\Delta}(p_T^{assoc}, p_T^{assoc})}}$$ - $D^0 v_2^{sub}$, to reduce the non-flow contributions - subtracting the $V_{2\Delta}$ in low multiplicity (Ntrk <35) - Simultaneous fit on mass distribution and v_2 vs. mass # D^0 Meson and Light Hadrons v_2 vs p_T • Significant $D^0 v_2$ have been observed in high multiplicity pPb • $v_2^{D^0} < v_2^{light \ hadrons}$ #### D^0 Meson v_2 vs p_T and PbPb Collisions - $D^0 v_2^{pPb} < v_2^{PbPb}$ for a given p_T - Similar mass ordering for pPb and PbPb # D^0 NCQ Scaling v_2 in pPb and PbPb - Number of constituent quarks (NCQ) scaling is motivated by quark coalescence model - In pPb, $D^0 v_2/n_q$ is smaller than strange hadrons for $KE_T/n_q < 2$ - In PbPb, $D^0 v_2/n_q$ follow the same trend as other particle species #### Summary #### • $D^0 R_{AA}$ at 5.02 TeV PbPb - Strong suppression of $D^0 R_{AA}$ - $R_{AA}(D^0) \sim R_{AA}(h^{\pm})$ at high p_T - $R_{AA}(D^0) > R_{AA}(h^{\pm})$ at low p_T #### • $D^0 v_2$ at 8.16 TeV pPb - Significant v_2 in high multiplicity events - $v_2(D^0) < v_2$ (strange hadrons) # Back Up #### The CMS Trigger and Data Sets #### Data sets - LHC Run II 2015 pp and PbPb at $\sqrt{s_{NN}}$ = 5.02 TeV and 2016 pPb data at $\sqrt{s_{NN}}$ = 8.16 TeV - ullet Minimum bias sample for $p_T < 20$ GeV/c and triggered samples for $p_T > 20$ GeV/c - Dedicated HLT D meson filters to enhance the statistics of very high p_T D mesons - High multiplicity trigger to select high multiplicity pPb events comparable to peripheral PbPb #### Triggering system Hardware Level 1 Jet Trigger Selections Level 1 (L1) jet algorithm with online background subtraction Track Selections in Software Triggers Track seed p_T cut applied: $p_T > 2$ GeV/c for pp/pPb $p_T > 8$ GeV/c for PbPb D^0 Selections D^0 online reconstruction Loose selections based on D^0 vertex displacement #### Scalar Product Method - Scaling factor from 3 sub events - \triangleright Large η gap applied ($|\Delta\eta| > 3.0$) - $> v_n \{SP\}$, non-ambiguous measure of $\sqrt{\langle v_n^2 \rangle}$ Luzum, Ollitrault PRC 87 (2013), 044907 19 p_⊤ for tracker #### D⁰ v2 in pPb Collisions at 8.16 TeV Fourier series describing the azimuthal anisotropy of particle spectrum $$\frac{dN}{d\phi} \propto 1 + \sum 2v_n(p_T, \eta) cos[n(\phi - \psi_n)]$$ - Two-particle correlation method to extract $oldsymbol{v}_2$ - Correlate D^0 and charged hadrons ($\Delta \eta$ gap = 1) - Perform Fourier fits the two particle correlation distribution for D^0 to extract $V_{2\Delta}(p_T^{D^0}, p_T^{assoc})$ - $D^0 v_2(p_T)$ can be obtain by : $$v_2^{D^0}(p_T) = \frac{V_{2\Delta}(p_T^{D^0}, p_T^{assoc})}{\sqrt{V_{2\Delta}(p_T^{assoc}, p_T^{assoc})}}$$ CMS HIN-17-003 Phys. Rev. Lett **121**,082301(2018)