

Overview of neutral-meson production in pp, p-A and A-A collisions at the LHC measured by ALICE

D.Peresunko for the ALICE collaboration

NRC "Kurchatov Institute"

Why neutral mesons?

- Neutral mesons can be reconstructed and identified through photon decays in wide p_{T} range
- pp collisions QCD predictions, tuning of PDF and FF, baseline for p-A and A-A
- p-A: looking at collective effects, nuclear effects in PDF, cold nuclear effects, reference for A-A
- A-A: collective effects, parton-medium interaction etc.
- All collisions: main input for direct photon and dilepton cocktails

Photon reconstruction in ALICE

PCM and calorimeter

- Using different technologies allows wide extension of p_T range
- Combination of independent results provides cross-check and significantly reduces final uncertainties

π^0 meson measurements in pp

- Spectra measured in pp collisions at $\sqrt{s}=0.9$, 2.76, 5.02, 7 and 8 TeV
- Pythia 8.2 Monash 2013 reproduces approximately π^0 spectra at all energies
- NLO pQCD calculations predict ~20-30% higher yield
 - DSS14 already incorporates ALICE pp at $\sqrt{s}=7$ TeV results

8 TeV ALICE collaboration : Eur. Phys. J. C (2018) 78:263 2.76 TeV ALICE collaboration : Eur. Phys. J. C 77 (2017) 339 7 TeV ALICE collaboration : Phys. Lett. B 717 (2012) 162-172

η meson measurements in pp

- Pythia 8.2 Monash 2013 reproduces approximately η spectra at all energies
- NLO pQCD calculations predict ~2x higher yield
 - ¹ Revisiting η -meson FF is necessary

- Experimental parameterization
- Widely used e.g. in EM cocktails if hadron spectra are not know
- Holds at high p_T >3 GeV/c
- Deviations ~40% at low p_{T}

8 TeV ALICE collaboration: EPJC (2018) 78:263 2.76 TeV ALICE collaboration: EPJC 77 (2017) 339 7 TeV ALICE collaboration: PLB 717 (2012) 162

- π^0 and η spectra measured in p-Pb collisions in 4 centrality classes:
 - 0-20%, 20-40%, 40-60%, 60-100%
- p_{T} range extended up to 40 GeV/c by using PHOS trigger

p-Pb->π⁰,η: 0-100% NSD: Eur. Phys. J. C (2018) 78: 624

No trivial autocorrelations with cent. estimator

Comparison to models

η/π^0 ratio in p-Pb collisions

- η/π^0 ratio shows no centrality dependence
- Same for K^{\pm}/π^{\pm} ratio

$R_{\rm AA}$ in Pb-Pb at $\surd s_{\rm \scriptscriptstyle NN}{=}2.76$ and 5.02 TeV

- Strong centrality dependence
- Similar R_{AA} for the two collision energies.

Pb-Pb $\sqrt{s_{NN}}$ =2.76 TeV 2010 data: Eur. Phys. J. C (2014) 74:3108 2011 data: arXiv:1803.05490

Comparison to D-mesons and hadrons

- Similar suppression at high $p_T > 10$ GeV/c for all species
- Smaller suppression of D-mesons compared to pions and charged at low $p_{\rm T}$
 - Quark mass difference?
 - Collective flow and recombination?
 - Soft pion production?
 - Another reason?

Comparison to theoretical calculations

Both models reproduce amount of suppression, p_{T} and centrality dependence

Djordjevic et al. :Phys. Rev. C 94, 044908 (2016) arXiv:1805.03494:Energy loss in evolving finite-size QGP

Vitev et al.: Phys. Rev. D 93, 074030 (2016): Soft-Collinear effective theory for jet propagation in matter.

Conclusions

- π^0 and η spectra measured in pp collisions at $\sqrt{s}=0.9$, 2.76, 5.02, 7 and 8 TeV
 - NLO pQCD
 - **\pi^0:** PDF: MSTW+FF:DSS14 predicts 20-30% higher yield
 - $^{ullet}\eta$: PDF: CTEQ6M5+FF: AESSS predicts 2x higher yield
- π^0 and η spectra in p-Pb at $\sqrt{s_{NN}}$ =5.02 TeV
 - centrality classes 0-20%, 20-40%, 40-60%, 60-100% with ZNA, V0A, CL1 centrality estimators
 - ^{\Box} Strong dependence of Q_{pPb} on rapidity gap to centrality estimator
 - Consistent with D-mesons within uncertainties
- π^{0} yield in Pb-Pb $\sqrt{s_{NN}}$ =5.02 TeV
 - □ R_{AA} at $\sqrt{s_{NN}}$ =2.76 and 5.02 TeV are very close
 - □ R_{AA} similar to one of D-mesons at p_T >10 GeV, but smaller at lower p_T
 - □ Models of Djordjevic et al. and Vitev et al., reproduce p_{T} and centrality dependence

Backup

NLO pQCD calculations predict ~20-30% higher yield

2.76 TeV ALICE collaboration : Eur. Phys. J. C 77 (2017) 339
7TeV ALICE collaboration : Phys. Lett. B 717 (2012) 162-172

