Measurements of Λ_c^\pm, D_s^\pm, $D^{*\pm}$ and $D^0(\bar{D}^0)$ Production in Au+Au Collisions at $\sqrt{s_{NN}} = 200$ GeV at STAR

Guannan XIE (for the STAR Collaboration)
University of Illinois at Chicago
Sept. 30 – Oct. 5, 2018
Introduction

Heavy quarks: $m_{c/b} \gg \Lambda_{\text{QCD}}, T_{\text{QGP(RHIC)}}$
- Produced early in heavy-ion collisions through hard scatterings
- Experience the whole evolution of the system
 → good probe of medium properties, e.g. transport parameters
- Focus on charm production

Charm Flow: Liang He on 2nd Oct. Bottom production: Xiaolong Chen on 2nd Oct

\[\frac{2\pi TD_s}{T/T_c} \]

Guannan Xie
Contents

- In medium energy loss
 - $D^0 R_{AA}, R_{CP}$

- Hadronization
 - Λ_c, D_s

- Total charm cross-section

- Possible medium effect of resonance production
 - $D^{*+/-}$

\[D^0 (D^0) \rightarrow K^+ \pi^- \]
\[\Lambda^+_c \rightarrow pK^- \pi^+ \]
\[D_s^+ \rightarrow \phi(1020)\pi^+ \rightarrow K^+K^- \pi^+ \]
\[D^{*+} \rightarrow D^0 + \pi^+_{soft} \]
Time Projection Chamber:
Tracking, PID \((dE/dx)\), \(|\eta|<1, 0<\phi<2\pi\)

Time Of Flight detector:
PID \((1/\beta)\), \(|\eta|<1, 0<\phi<2\pi\)
Heavy Flavor Tracker

HFT:
- Silicon Strip Detector: $r \sim 22$ cm
- Intermediate Silicon Tracker: $r \sim 14$ cm
- PIXEL detector: $r \sim 2.8$ & 8 cm, MAPS, 20.7x20.7 μm², 0.5%X_0 (2014), 0.4%X_0 (2016), air-cooled

Guannan Xie
D⁰ pₜ Spectra

- Precise measurements of D⁰ spectra extended to low pₜ and non-central collisions from 2014 data with HFT
- Results consistent with the re-analyzed 2010/11 TPC-only analysis

Au+Au @ 200 GeV

STAR Preliminary

0-10% (×20)
10-40% (×5)
40-80% (×2)

Levy Fit

Ratio
D^0 R_{AA}

- $R_{AA} < 1$ in the 0-10% centrality interval for all p_T
- Suppression at high p_T increases towards more central collisions
- Similar trend as D-mesons at LHC and high-p_T pions at RHIC

STAR Preliminary

```
Au+Au $\sqrt{s_{NN}} = 200$ GeV
```

(a) 0-10%

(b) 10-40%

(c) 40-80%

STAR Preliminary

```
Au+Au $\sqrt{s_{NN}} = 200$ GeV
```

(a) 0-12%

ALICE: JHEP 03 (2016) 081

DUKE: PRC 92 (2015) 024907

+ private comm
D⁰ Rₜₚ and D⁰\overline{D⁰} Ratio

- Significant suppression at high pₜ.
- Reasonable agreement with theoretical calculations.
- D⁰\overline{D⁰} ratio is larger than 1, possibly due to finite baryon density.
D⁰ Cross-section and Blast Wave Fit

- \(p_T \)-integrated \(D^0 \) cross-section is nearly independent of centrality, and smaller than in \(p+p \) collisions. However, for \(p_T > 4 \text{ GeV/c} \) it decreases towards central collisions.

- Blast Wave fits (\(p_T < 5 \text{ GeV/c} \)): suggests earlier freeze-out of \(D^0 \) compared to light flavor hadrons.
Λc and Heavy Quark Hadronization

- Strong enhancement of Λ_c/D^0 ratio seen in Au+Au collisions.
- Enhancement predicted from coalescence hadronization.
- Enhancements relative to PYTHIA also seen in p+p and p+Pb collisions at LHC.

QM17

Λ_c/D^0 in A+A

p_T and centrality dependence?

Guannan Xie

More than 50% improvement in signal significance with TMVA BDT
Also new data from 2016
→ Effectively 4x more data

\((\Lambda_c) = 108 \pm 21\)
Significance = 5.1

\((\Lambda_c) = 233 \pm 22\)
Significance = 10.8
\(\Lambda_c/D^0 : p_T \) Dependence

- Significant enhancement of \(\Lambda_c/D^0 \) compared to PYTHIA/fragmentation baseline
- The \(\Lambda_c/D^0 \) ratio is comparable with light flavor baryon-to-meson ratios
- Consistent with charm quark hadronization via coalescence
 -- higher than model predictions, particularly at higher \(p_T \)
Λ_c/D^0: Centrality Dependence

- Λ_c/D^0 ratio increases from peripheral to central collisions, indicative of hot medium effects
- Ratio for peripheral $Au+Au$ comparable with $p+p$ value at 7 TeV
D$_s$/D0 Enhancement

- Strong D$_s$/D0 enhancement observed in central A+A collisions w.r.t fragmentation baseline
 - Strangeness enhancement and coalescence hadronization
- Enhancement is larger than model predictions, particularly at higher p$_T$

Guannan Xie
Total Charm Cross-section

- Total charm cross-section is estimated from the various charm hadron measurements.

-- D^0 yields are measured down to zero p_T.
-- For $D^{+/−}$ and D_s, Levy fits to measured spectra are used for extrapolation.
-- For $Λ_c$, three model fits to data are used and differences are included in systematics.

<table>
<thead>
<tr>
<th>Charm Hadron</th>
<th>Cross Section $dσ/dy$ (μb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D^0</td>
<td>$41 \pm 1 \pm 5$</td>
</tr>
<tr>
<td>D^+</td>
<td>$18 \pm 1 \pm 3$</td>
</tr>
<tr>
<td>D_s^+</td>
<td>$15 \pm 1 \pm 5$</td>
</tr>
<tr>
<td>$Λ_c^+$</td>
<td>$78 \pm 13 \pm 28^*$</td>
</tr>
<tr>
<td>Total</td>
<td>152 \pm 13 \pm 29</td>
</tr>
<tr>
<td>Total</td>
<td>130 \pm 30 \pm 26</td>
</tr>
</tbody>
</table>

* derived using $Λ_c^+ / D^0$ ratio in 10-80%

- Total charm cross-section is consistent with $p+p$ value within uncertainties, but redistributed among different charm hadron species.
D*+ Production in Au+Au Collisions

- D*+ feeds down to D^0 yields $D^{*+} \rightarrow D^0 + \pi^+_\text{soft}$
- Possible hot medium effects:
 - D*+ life time could become shorter in hot medium
 - Re-scattering can lead to loss of yield

D*+/D0 Ratio in Au+Au Collisions

- D*+/D0 ratio in Au+Au collisions at 200 GeV is consistent with PYTHIA and with ALICE data at higher pT.
- Ratio of the integrated yields shows no strong centrality dependence

\[\text{STAR Preliminary} \]

\[\text{Guannan Xie} \]

\[K^*/K, \text{ Phys. Rev. C (2011) 84. 034909.} \]

\[ALICE \text{ Collaboration, arXiv:1804.09083.} \]
• Strong modification of charm hadron spectra in A+A collisions. \((D^0 R_{AA} \& R_{CP}, D_s/D^0, \Lambda_c/D^0)\).
 -- total charm quark cross-section consistent with that in p+p, but redistributed
 -- substantial energy loss
 -- coalescence hadronization
• Next, measurement of bottom hadrons via various decay channels to test mass hierarchy of parton energy loss

Bottom production: Xiaolong Chen on 2\(^{nd}\) Oct
Back up
D^0 in AuAu (2010/2011 TPC Analysis) - I

Erratum: PRL 113 (2014) 142301

1. Two mistakes were discovered in calculating TOF related efficiency corrections
 - Hybrid PID: algorithm inconsistently implemented in data analysis vs. efficiency calculation
 - a DCA_{xy} cut efficiency was included in the correction two times
2. p+p measurement: no issue discovered, but the p+p D^0 baseline used for R_{AA} is updated with latest knowledge of charm frag. ratios
 - considering the p_T dependence of D*/D^0 frag. ratio
 - latest world average of c->D^0 and c->D* frag. ratios

Guannan Xie
Hard Probes 2018 (Aix-Les-Bains, France)
Topological Reconstruction

- Direct topological reconstruction through hadronic channels

\[D^0 (\bar{D}^0) \rightarrow K^\mp \pi^\pm \]
\[\Lambda_c^+ \rightarrow pK^- \pi^+ \]
\[D_s^+ \rightarrow \phi(1020)\pi^+ \rightarrow K^+K^-\pi^+ \]

- With HFT: greatly reduced combinatorial background

- Topological cuts optimized by TMVA (Toolkit for Multi Variate Analysis)
• Similar suppression for D^0 and $D^{+/−}$

• Spectra measurement was important for the total charm cross-section

STAR preliminary

Au+Au $\sqrt{s_{NN}} = 200$ GeV

Centrality 0-10%

D$^\pm$ 2016
D0 2014
D$^\pm$ 2016 Glob. Sys.
Glob. p+p uncert.
p+p uncert.
B Study from Non-prompt J/ψ & D⁰ & e

- Strong interaction of charm with the medium. How about bottom?
- Strong suppression for $B \to J/\psi$ and D^0 at high p_T.
- Indication of less suppression for $B \to e$ than $D \to e$ ($\sim 2 \sigma$): consistent with $\Delta E_c > \Delta e_b$. Measurements with improved precision on the way.

R_{AA} references (data vs. theory) are different for comparisons. The decay kinematics needs to be unfolded for different channels.