

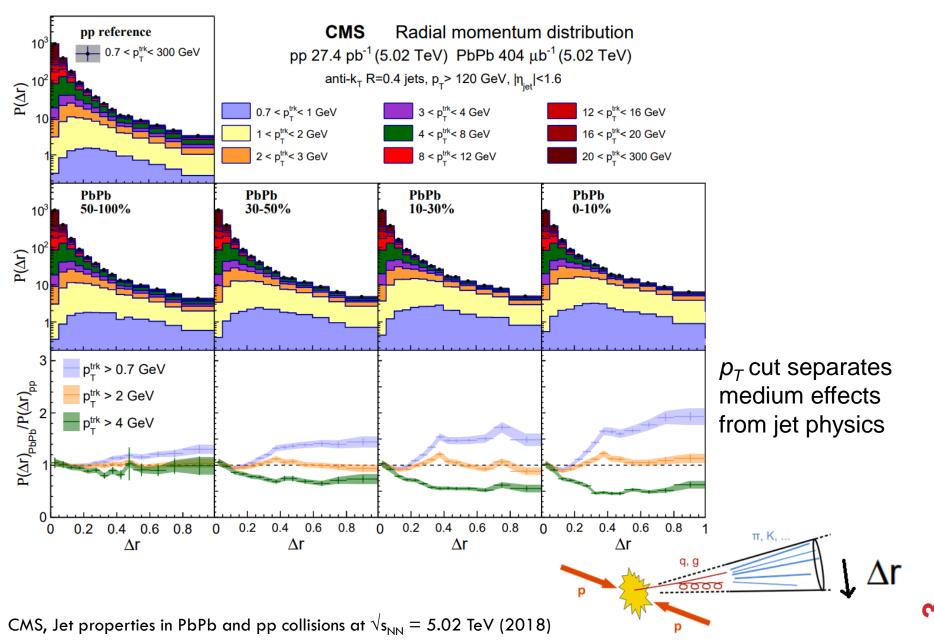
Universiteit Utrecht

JET ENERGY LOSS IN A FLOWING PLASMA

JET SHAPE MODIFICATIONS IN HOLOGRAPHIC DIJET SYSTEMS

With Jasmine Brewer, Krishna Rajagopal and Andrey Sadofyev 1602.04187 (PRL), 1710.03237 (JHEP) and 1809.10695

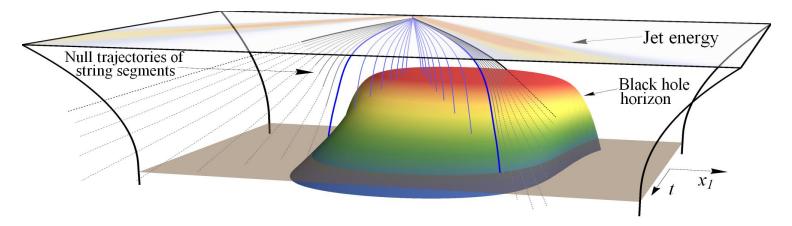
OUTLINE


Motivation and a simple model

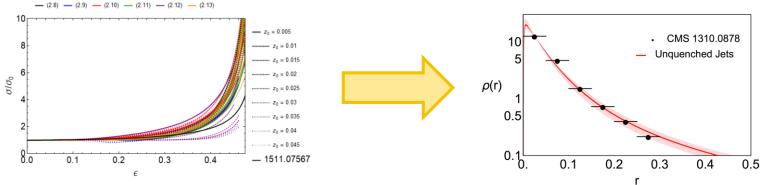
- (weakly coupled) jet energy interacts strongly with QGP
- From production (pQCD) to strings to null geodesics in AdS
- Goal is to provide energy loss formalism valid for flowing plasma

Jet shapes and (holographic) dijet systems

- Dijet asymmetry interesting: path length & fluctuations essential
- Study leading and subleading shape modifications
- Observable: dijet asymmetry for different subleading jet width


TRENDS IN JET ANALYSIS

Wilke van der Schee, MIT/Utrecht


JET ENERGY LOSS IN ADS/CFT

Quark-antiquark pairs ~ strings in AdS geometry

Leads to (simplified) model for jet evolution

- String segments quickly follow null geodesics in semi-universal way
- Possible to track null geodesics falling in: determines energy loss
- Final shape depends on specific evolution

FLOW AND IDEAL HYDRODYNAMICS

Final formula for geodesics in ideal hydrodynamics, including flow:

$$Z''(t) = -2\pi^4 T^4 \left(1 - v_{||}\right) Z(t)^3 \left(\frac{1 - v_{||}}{v_{||}^2 + v_{\perp}^2 - 1}\right)$$

- Z is holographic coordinate string segment, T and v depend on (τ, x_{\perp})
- Initial position close to zero, initial Z' related to jet width

Flow had not yet been included

- Formula can have analytic solutions for constant temperature
- Varying temperature is non-trivial (even when gradients are small)
- Effects of gradients is relatively small (upcoming work)
- (full formula including Z' and viscous terms is known but longer)

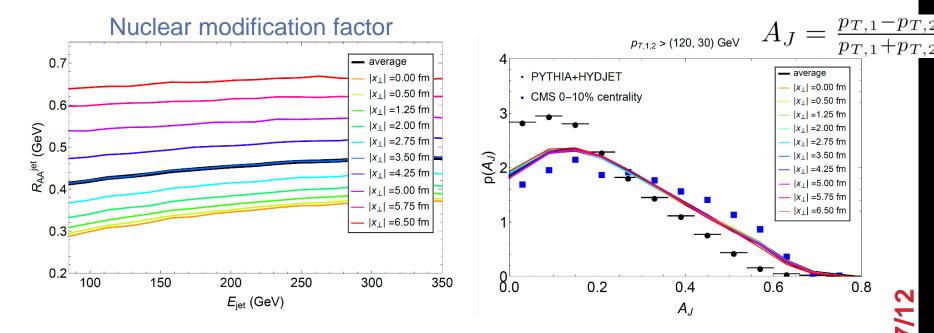
$$ds^{2} = -2 u_{\mu} dx^{\mu} dr - r^{2} f(br) u_{\mu} u_{\nu} dx^{\mu} dx^{\nu} + r^{2} P_{\mu\nu} dx^{\mu} dx^{\nu} + 2 r^{2} b F(br) \sigma_{\mu\nu} dx^{\mu} dx^{\nu} + \frac{2}{3} r u_{\mu} u_{\nu} \partial_{\lambda} u^{\lambda} dx^{\mu} dx^{\nu} - r u^{\lambda} \partial_{\lambda} (u_{\nu} u_{\mu}) dx^{\mu} dx^{\nu}$$

Sayantani Bhattacharyya, Veronika Hubeny, Shiraz Minwalla and Mukund Rangamani, Nonlinear Fluid Dynamics from Gravity (2007)

A SIMPLE ALGORITHM

Energy loss from AdS/CFT in a dynamic setting

- Start with several string segments at boundary (~20), with different Z'
 - Z' of endpoint is determined by pQCD opening angle of q/g
 - Z' of other segments is taken from semi-universal curve (slide 4)
- Evolve Z(t) according to simple differential equation
- Straightforward to determine energy outside horizon

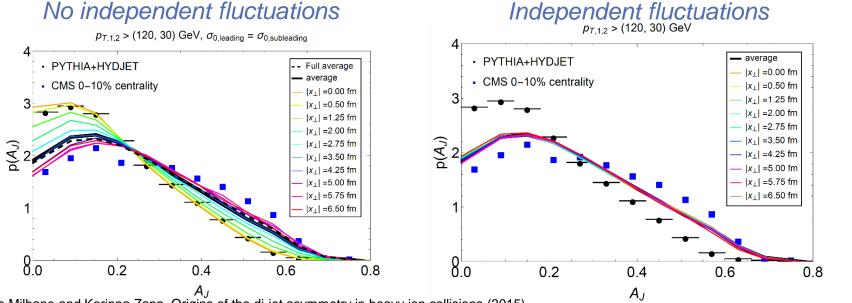

Main difference with current dE/dx approaches:

- Need to keep track of ~20 variables per parton,
 i.e. parton wave function more complicated than just energy
- 2nd order equation: memory effect
 - Perhaps similar to L² or L³ scaling of current approaches
- Relatively non-linear interplay of E(x) versus T(t) and v(t)

DIJET ASYMMETRY

Two sources of (extra) imbalance in heavy ion dijet asymmetry:

- Path length: different path length \rightarrow less balanced
- Fluctuations of energy loss: jet width fluctuations (our model)
- Nice trick to turn off path length imbalance: start all jets at center
 - Turns out that in our model (and in JEWEL) A_J is insensitive to position

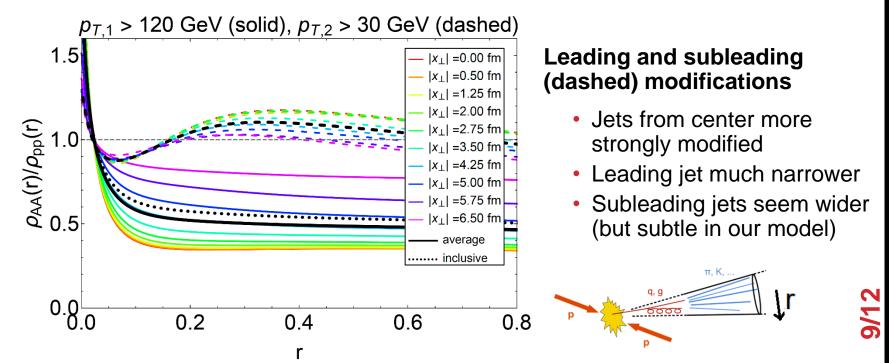


Guilherme Milhano and Korinna Zapp, Origins of the di-jet asymmetry in heavy ion collisions (2015)

DIJET ASYMMETRY

(Artificial) way of turning off independent energy loss fluctuations

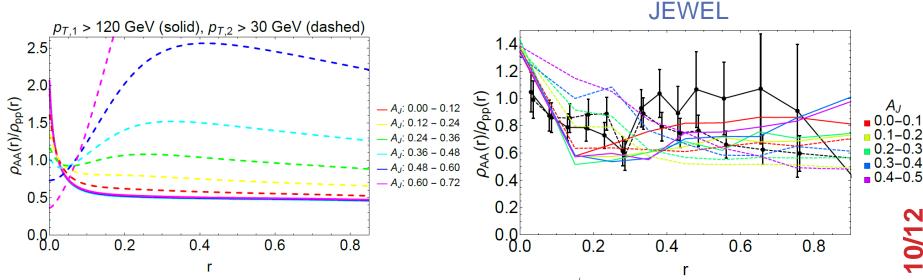
- Select subset of dijets in sample that have equal jet widths
- Relative energy loss fully determined by path length imbalance
- Now indeed dijet asymmetry of jets produced at center is unmodified
 - Curiously average dijet asymmetry agrees with full result


Guilherme Milhano and Korinna Zapp, Origins of the di-jet asymmetry in heavy ion collisions (2015) Jasmine Brewer, Andrey Sadofyev and WS, Jet shape modifications in holographic dijet systems (2018)

JET SHAPE MODIFICATIONS

Two clear lessons:

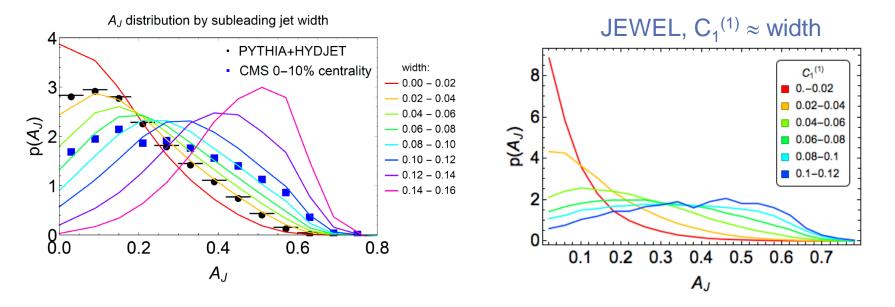
- Influence of path length imbalance and fluctuations `cancels'
- Dijet asymmetry is uninformative on where a jet was produced
- Jets from center lose more energy, hence larger fluctuations


Jets at center are also more heavily modified:

JET SHAPE MODIFICATIONS

Can these differences be probed experimentally?

- Select jet shapes according to dijet imbalance
- Compare with JEWEL, matches qualitatively
- Includes CMS data with $p_T > 3$ GeV, to exclude thermal particles
- Subtlety for subleading: rather large contribution from 3rd jets and incoherent partons (included in JEWEL, not in our model)


CMS, Measurement of transverse momentum relative to dijet systems in PbPb and pp collisions at $\sqrt{s_{NN}}$ = 2.76 TeV (2015)

11/12

A NEW OBSERVABLE?

Dijet asymmetry is very sensitive to subleading jet width

- · Large subleading width leads to imbalanced dijet
- JEWEL effect is a bit stronger for small width, weaker for large width
- Quite intuitive: large subleading width \rightarrow large energy loss \rightarrow large A_J

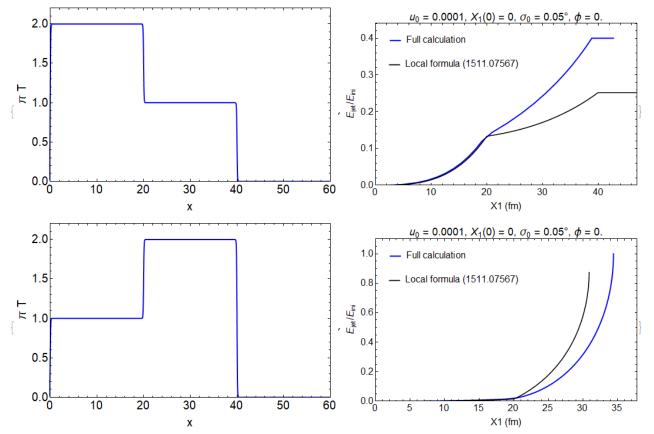
CMS, Measurement of transverse momentum relative to dijet systems in PbPb and pp collisions at $\sqrt{s_{NN}}$ = 2.76 TeV (2015)

DISCUSSION

The model

- Take initial conditions of strings from pQCD
- Treat evolution in holography: medium interaction is strongly coupled
- Currently oversimplified: no hadronisation, back-to-back jet, medium etc

Jet shape modifications and dijet asymmetry


- Confirmed dijet asymmetry does not depend on starting position
- Jet shape modifications strongly depend on position
- Leading jet shape narrower, independent of A_J
- Subleading jet shape increasingly wider for increasing A_J
- Observable: dijet asymmetry for different subleading jet width?

Outlook

- Implementation in Monte Carlo?
- Full understanding initial condition string: 3-jets etc
 - Can have important effects on subleading jet at large r
- Not quite related: back-reaction lost energy on medium: where does E/p go?

VARYING TEMPERATURE

Energy loss depends on temperature evolution non-linearly:

- First phase agrees with (ultra)local formula (Chesler, Rajagopal)
- Interesting: (final) energy loss much bigger for 2nd profile
- Illustrates `memory-effect': wave function remembers evolution

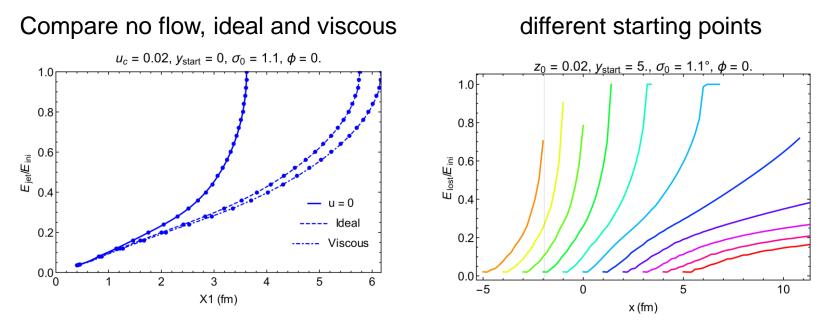
SECOND EFFECT: FLOW

Final formula for geodesics in ideal hydrodynamics:

$$Z''(t) = -2\pi^{4}T^{4} \left(1 - v_{||}\right) Z(t)^{3} \left(\frac{1 - v_{||}}{v_{||}^{2} + v_{\perp}^{2} - 1}\right)$$

$$\int_{\mathbf{k}}^{5} \int_{\mathbf{k}}^{4} \int_{\mathbf{k}}^{5} 2 \int_{\mathbf{k}}^{5} 2 \int_{\mathbf{k}}^{4} \int_{\mathbf{k}}^{5} 2 \int_{\mathbf{k}}^{4} \int_{\mathbf{k}}^{5} 2 \int_{\mathbf{k}}^{4} \int_{\mathbf{k}}^{5} 2 \int_{\mathbf{k}}^{4} \int_{\mathbf{k}}^{5} 2 \int_{\mathbf{k}}^{5} \int_{\mathbf{k}}^{5} 2 \int_{\mathbf{k}}^{5} \int$$

(Z" essential for energy loss, but not proportional to energy loss)


Corrections due to viscosity:

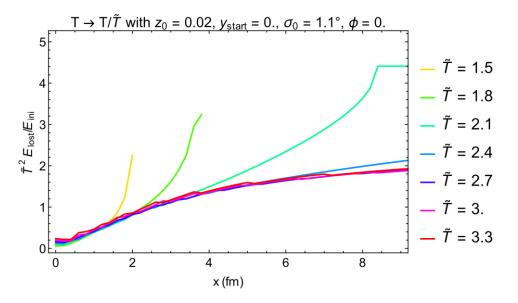
$$\Delta Z''(t) = -2\pi^4 T^3 \left(\frac{2}{3}\frac{\partial v_x}{\partial x} + 2\left(\frac{\partial v_x}{\partial x} + 2\frac{\partial v_x}{\partial t}\right)T Z(t)\right) Z(t)^3$$

5/12

RESULTS IN GUBSER FLOW

Resulting energy loss in (analytic) simple model for central collision

- Flow has extremely important effect, doubling stopping distance
 - Recall old result: $\Delta x_{\text{stop}} = \left[\frac{2^{1/3}}{\sqrt{\pi}} \frac{\Gamma\left(\frac{5}{4}\right)}{\Gamma\left(\frac{3}{4}\right)}\right] \frac{1}{T} \left(\frac{E_*}{\sqrt{\lambda}T}\right)^{1/3}$
- Corrections due to gradients significant, but small

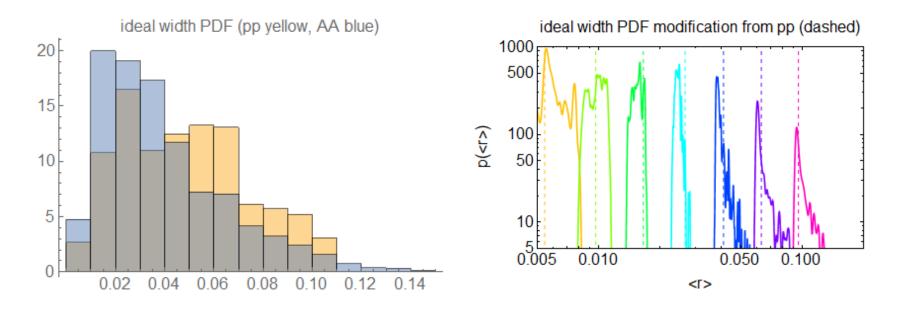

P.M. Chesler, K. Jensen, A. Karch and L.G. Yaffe, Light quark energy loss in strongly-coupled N = 4 supersymmetric Yang-Mills plasma (2008) Andrej Ficnar and Steven Gubser, Finite momentum at string endpoints (2013)

6/12

ENERGY LOSS VERSUS TEMPERATURE

Are there semi-general lessons for this energy loss?

- Try extracting dependence dE/dx on temperature: rescale T by \tilde{T}
- Numerical finding: different curves collapse when scaling by T^2
 - Up to point where particular jet loses all energy: early time scaling



 (fairly robust, but scaling somewhat dependent on semi-universal curve, e.g. result from different black line gives T³)

MODIFIED JET WIDTH DISTRIBUTIONS

Jet shapes become narrower: jet width distribution

- Can also compare with original pp 'truth' jet width
- Even individual jets can become narrower
 - Only for intermediate widths and intermediate energy losses

