Measurement of long-range correlations in Z-tagged pp events with ATLAS

Adam Trzupek

on behalf of the ATLAS experiment Institute of Nuclear Physics PAN, Kraków, Poland

International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions, Hard Probes 2018 Aix-Les-Bains, France, Oct 1 - 5, 2018

Ridge in High Multiplicity p+Pb and pp Collisions

PRC 90,044906 (2014)

PRL 116, 172301 (2016)

Strongly interacting QGP in small systems?

Constraining pp Geometry

- Fluctuations in the internal structure of the nucleon may lead to a strong correlation of ε_2 with *b*, being at the same time independent on multiplicity (PRC94 (2016) no.2, 024919)
- Presence of Z, a handle on the *pp* collision geometry
 - Measurement of 2PC in events with the Z boson

ATLAS-CONF-2017-007 – Measurement of long-range azimuthal correlations in Z-boson tagged pp collisions at 8 TeV

Datasets

8 TeV pp data collected in 2012 during Run 1

- $L_{\text{int}} = 19.4 \text{ fb}^{-1}$, high-luminosity data, $\mu \approx 20$
- Collisions contain Z boson
- $Z \rightarrow \mu^+ \mu^-$: 80 < $M_{\mu\mu}$ < 100 GeV, p_T^{μ} > 20 GeV, $|\eta^{\mu}|$ < 2.4
- 2PC are obtained with charged particles reconstructed in ID
 - p_T > 0.4 GeV, |η|< 2.5
 - $|\omega| < 0.75 \text{ mm}$, $\omega = (z_0 z_{vtx}) \sin \vartheta$
- All tracks belonging to Z-vertex (direct tracks) n_{trk}^{direct}
 - $n_{trk}^{direct} = n_{trk}^{signal} + n_{trk}^{background}$
- Background (pileup) approximated by Mixed event sample
 - Random selection procedure (ATLAS, Eur. Phys. J. C74(2014)3195)
 - Mixed events contain tracks from different events at the same instantaneous luminosity μ and run as the Z-boson
 - Mixed event tracks fulfill: $|\omega| < 0.75$ mm (w.r.t. Z-vertex)

Pileup Background from Mixed Events

The mixed event and direct track densities for different \bar{z}_{vtx} and $\bar{\mu}$

- Mixed events well approximate background: $n_{trk}^{mix} \approx n_{trk}^{background}$
- To assure run-by-run uniformity, reduced variables are used

$$(\bar{\mu}, \bar{z}_{vtx}) = \left(\frac{\mu}{\sqrt{2\pi} RMS(z_{vtx})}, \frac{z_{vtx} - \langle z_{vtx} \rangle}{RMS(z_{vtx})}\right)$$

ATLAS-CONF-2017-007

Background Parametrization

• Mean number of bkgd tracks, *v*, depends on $\overline{\mu}$ and \overline{z}_{vtx} *v* is used to select (bin) events for 2PC pileup correction

Probability Distributions for n_{trk} direct and n_{trk} mixed

7

Two-particle correlations with pileup

pileup

Template fitting method

The pileup corrected two-particle correlation function is fitted with template function to separate non-flow (e.g. dijets) from the ridge correlations (PRL116 172301 (2016), PR C96 (2017) 024908)

Two-particle correlations with pileup

Comparison of v_2 obtained from template analysis with and without pileup correction ATLAS-CONF-2017-007

Pileup correction increases v₂ by ~20%

Results

 v_2 in Z-tagged events compared to inclusive 5 and 13 TeV pp results

ATLAS-CONF-2017-007

- No multiplicity dependence observed
- Integrated v_2 is 8 ± 6%* larger in Z-tagged events than inclusive v_2
 - Expected decrease, for constrained initial geometry not observed

* p_{τ} -spectrum in collisions containing Z-boson is harder than in inclusive collisions

Summary

- ATLAS measured long-range two-particle azimuthal correlations in Z-tagged *pp* collisions at √s = 8 TeV
 - Constraining initial pp collision geometry => origin of ridge
- First measurement of 2PC in high-pileup samples
 - luminosity $\mu \sim 20$
 - Up ~20% pileup-correction to v_2
- v_2 in Z-tagged events shows no dependence on n_{trk}^{signal}
 - the v_2 is 8 ± 6%* larger than in inclusive 13 TeV *pp* coll.

Method can be used in other high-pileup measurements in future HI analyses

* p_{τ} -spectrum in collisions containing Z-boson is harder than in inclusive collisions 13

ATLAS Detector

Background Parametrization

Two-particle correlations with pileup

pairs ATLAS Preliminary pp. √s=8 TeV. 19.4fb As Direct event has contributions from 590 $70 < n_{tube}^{direct} \le 80$ 6500 both Signal and Background tracks, 0.5<p_a,b<5.0 GeV 580 2.0<l∆ηl<5.0 2PC has to be **corrected** for pileup: <Mixed×Mixed Context > Direct 570 Signal^a×Signal^b = Direct^a×Direct^b -Signal^a×Bkg^b - Bkg^a×Signal^b .s 2750 sjied 1240 - Bkg^a×Bkg^b 2745 \sim Assuming: $\langle Background \rangle \equiv \langle Mixed \rangle$ <Mixed>×<Mixed> ²⁷³⁵ <- Oirect> × < Mixed> <Signal> = <Direct> – <Mix> 123 2730 <Signal^a×Signal^b> = <Direct^a×Direct^b> bairs 6600 SJ4500 – <Direct^a>×<Mix^b> –<Mix^a>×<Direct^b> <Direct × Direct> 6500 4400 $- < Mix^a \times Mix^b > +2 < Mix^a > \times < Mix^b >$ <Signal × Signal <Signal × Signal> 640

Averaged over all ν conditions ($\nu < 7.5$) and in 70 < $n_{trk}^{direct} \le 80$ Muon inner detector tracks excluded from 2PC

Systematic uncertainties for v₂

Source	n ^{signal} range	Uncertainty [%]
Choice of peripheral bin	30–70	7–3
	70–100	3
Tracking efficiency	30-100	0.5
Pair acceptance	30-100	1
Mixed and Background equivalence	30-100	2
Accuracy of background estimation	30-100	1
Uncertainties in transition matrices	30-100	2
Pileup correction procedure	30–100	3.5
Total	30-100	6

Mixed tracks p_T and η distributions

