

\hat{q} analysis in a hybrid Boltzmann-Langevin approach with an improved LPM treatment

Weiyao Ke Collaborators: Yingru Xu, and Steffen Bass

Duke University

October 2, 2018

This work is supported by OpenScienceGrid, U.S. Department of Energy Grant no. DE-FG02-05ER41367, National Science Foundation Grant no. OAC-1550225.

Extraction of \hat{q} from systematic model-to-data comparison

- Radiation-improved Langevin Eq. (Cao et al PRC 92 024907), coupled to a tuned 2+1D viscous hydro evolution (Bernhard arXiv 1804.06469).
- Input: functional forms of $\hat{q}(E, T)$.
- Compare to R_{AA} and v_2 measurements at the LHC.

Xu et al, PRC 97 014907 and work in progress, ALICE PRL 120 102301,

Extraction of \hat{q} from systematic model-to-data comparison

- Radiation-improved Langevin Eq. (Cao et al PRC 92 024907), coupled to a tuned 2+1D viscous hydro evolution (Bernhard arXiv 1804.06469).
- Input: functional forms of $\hat{q}(E, T)$.
- Compare to R_{AA} and v_2 measurements at the LHC.

Xu et al, PRC 97 014907 and work in progress, ALICE PRL 120 102301,

Issue 1: different approaches lead to different results

- Compare improved Langevin Eq to a recent linearized Boltzmann Eq. (Ke et al, arXiv:1806.08848).
- Use same medium evolution. Compare to the same set of observables.
- However, different 95% credible region of \hat{q} .
- Motivate a model that is more inclusive on assumptions.

Issue 2: how to implement a kinetic theory with coherence effect?

- Landau-Pomeranchuk-Migdal effect suppresses incoherent radiation.
 - Qualitative features of coherence
 - Quantitative agreement with theory ?
- This affects the interpretation of theory-to-data comparison.
- Need an improved implementation of the LPM effect.

Roadmap of this presentation

Interpolate diffusion approximation to the scattering picture

- Absorb small \hat{t} processes of the rate equation into a diffusion equation Ghiglieri et al, JHEP 03 (2016) 095 \rightarrow introduce a separation scale \hat{t}_{cut} . First implementation for light sector (Dai, today Parallel 1, 17:45).
- ullet Elastic processes $\propto 1/\hat{t}^2$ Rate equation. Sensitive to \hat{t} cut-off.
- Small-|t| interactions are frequent and soft \approx a diffusion process.

Roadmap of this presentation

Interpolate diffusion approximation to the scattering picture

- Absorb small \hat{t} processes of the rate equation into a diffusion equation Ghiglieri et al, JHEP 03 (2016) 095 \rightarrow introduce a separation scale \hat{t}_{cut} . First implementation for light sector (Dai, today Parallel 1, 17:45).
- ullet Elastic processes $\propto 1/\hat{t}^2$ Rate equation. Sensitive to \hat{t} cut-off.
- Small-|t| interactions are frequent and soft \approx a diffusion process.

Implement and validate an improved treatment of LPM effect.

- ullet Fine tune MC to match theory calculation $(dI/d\omega)$ in special cases.
- Achieve less ambiguous statement when compare to data.

- Large momentum-transfer elastic scattering solved by a rate equation.
- Restrict momenta transfer to $|t| > |\hat{t}_{cut}|$.

$$df_Q/dt = C^{2\leftrightarrow 2}_>$$

- Small momentum-transfer processes solved by a Langevin equation.
- Transport coefficient $\hat{q}_< = \alpha_s C_F T m_D^2 \ln(1 + |\hat{t}_{\rm cut}|/m_D^2)$.

$$df_Q/dt = C_>^{2\leftrightarrow 2} + \partial_p (Ap + \partial_p B)_< f_Q$$

- Improved Gunion-Bertsch matrix-element Fochler et al, PRD 88 014018
- Again, require $|t| > |\hat{t}_{\rm cut}|$.

$$df_Q/dt = C_>^{2\leftrightarrow 2} + \partial_p (Ap + \partial_p B)_< f_Q + C_>^{2\to 3}$$

- Take small momenta transfer limit of Gunion Bertsch matrix-element.
- Diffusion induced radiation $d\Gamma/dxdk_{\perp}^2\sim lpha_{s}\hat{q}_{g,<}/(\pi x k_{\perp}^4)$

$$df_Q/dt = C_>^{2\leftrightarrow 2} + \partial_p (Ap + \partial_p B)_< f_Q + C_>^{2\to 3} + C_<^{1\to 2}$$

• Allow gluon elastic processes until it is "fully formed" when $au_f < \Delta t$ Zapp et al, JHEP 07 (2011) 118.

$$df_g/dt = C_>^{2\leftrightarrow 2} + \partial_p (A_g p + \partial_p B_g)_< f_g$$

• Gluon formation time $au_f \sim 2k/k_\perp^2$ changes as a function of Δt .

Multiple scattering & LPM suppression $\square \rightarrow \square \square$

ullet LPM effect: accept incoherent radiation with probability $p\sim m_D^2/\hat{q} au_f$.

$$\begin{array}{rcl} df_g/dt & = & \mathcal{C}^{2\leftrightarrow 2}_{>} + \partial_p \left(A_g p + \partial_p B_g\right)_{<} f_g \\ df_Q/dt & = & \mathcal{C}^{2\leftrightarrow 2}_{>} + \partial_p \left(Ap + \partial_p B\right)_{<} f_Q \underbrace{+\mathcal{C}^{2\leftrightarrow 3}_{>} + \mathcal{C}^{1\leftrightarrow 2}_{<}}_{\text{Accept with } p \sim m_D^2/\hat{q}\tau_f} \end{array}$$

Multiple scattering & LPM suppression

Validate the LPM treatment: infinite medium limit

- ullet Theoretical spectra $dI/d\omega$ from AMY, NLL Arnold and Dogan, PRD 78 065008.
- $\omega < 2\pi T$, goes back to incoherent simulation (blue lines)
- $\omega > 2\pi T$, agree with theoretical results within $\pm 15\%$

Validate the LPM treatment: finite medium

- ullet Path-length (L) dependent $dI/d\omega$ Caron-Huot and Gale, PRC 82 064902.
- Achieve similar level of accuracy as the previous case.

Validate the LPM treatment: expanding medium

- Spectra in an expanding medium Baier et al, PRC 58 1706.
- $(T/T_0)^3 = (\tau_0/\tau)^{2-1/\nu}$. Static: $\nu = 1/2$. Bjorken: $\nu = 1$.

Running coupling and dead-cone effect

Running coupling constant

- $\alpha_s^{\mathrm{el}} = \alpha_s(Q^2 = \hat{t})$, $\alpha_s^{\mathrm{rad}} = \alpha_s(Q^2 = k_{\perp}^2(\Delta t))$.
- ullet The running is cut-off at a medium scale $\mu \sim T$, $lpha_{
 m s} = lpha_{
 m s} (\max\{Q,\mu\})$

Mass (Dead-cone) effect

- Accept gluon according to $\left(\frac{\theta^2}{\theta^2 + \theta_D^2}\right)^n$, $\theta_D = M/E$.
- $\theta = k_{\perp}/\omega$ evolves with Δt due to gluon reinteraction.

Benchmark result:

- Fixed coupling calculation $\alpha_s=0.3,0.4; \ |\hat{t}_{\mathrm{cut}}|=m_D^2.$
- Reasonable description above $p_T=10$ GeV with large α_s .

Benchmark result:

- Running coupling $\alpha_s(\max\{Q,\mu\})$, $\pi T < \mu < 2\pi T$, $|\hat{t}_{cut}| = m_D^2$.
- Shape of R_{AA} and v_2 slightly improved.

Benchmark result:

- ullet $|\hat{t}_{\mathrm{cut}}|
 ightarrow \infty$, approximate all interactions by diffusion+radiation.
- Intermediate p_T range suppressed more compared to high p_T .

Application to future Bayesian analysis

 $\Delta\hat{q}$ may be

- 1. Higher order.
- 2. Non-perturbative.
- 3. Parametric.

Application to future Bayesian analysis

 $\Delta\hat{q}$ may be

- 1. Higher order.
- 2. Non-perturbative.
- 3. Parametric.

12 / 13

The development of the Lido model

- Small-|t| processes are absorbed into a diffusion equation.
- Large-|t| processes are solved by a rate equation.

Improving the LPM implementation

- Gluon reinteraction is included.
- Validate in infinite/ finite, static/ expanding medium.

Future plan

- Perform a Bayesian parameter extraction of \hat{q} .
- Couple to quarkonium transport (Yao, Wed Session 3, 09:40).
- Integrate the model into the JetScape framework.

Back-up: compare to the old approach

In our <u>old</u> approach, LPM effect is introduced as a coherence factor in the $2 \rightarrow 3$ matrix-element, but exclude multiple scatterings.

$$\int \frac{d\sigma_{23}}{d\hat{t}dk^3} d\hat{t} \frac{dk^3}{2k} \to \int \frac{d\sigma_{23}}{d\hat{t}dk^3} 2\left[1 - \cos\left(\frac{\Delta t}{\tau_f}\right)\right] d\hat{t} \frac{dk^3}{2k}, \tau_f \sim \frac{2k}{k_\perp^2}$$

Back-up: detailed comparison

$$\alpha_{\rm s}=0.1$$

$$\alpha_{\rm s}=0.3$$

Back-up: energy loss in an infinite medium

Back-up: mass dependence

