Finite formation time effects for in-medium parton splittings

Víctor Vila

Universidade de Santiago de Compostela

Hard Probes 2018 - Aix-les-Bains, 02 October 2018

< ≣⇒

Image: A matrix and a matrix

Motivation: jet substructure

- Jets have substructure:
 - Dynamics of an energetic parton in matter.
 - We need theoretical tools to compute multiparticle scenarios from first principles.
 - Keys: Coherence, medium-induced radiation, jet fragmentation...

A (1) < A (2)</p>

Motivation: unifying existing knowledge

- Existing knowledge well understood separately:
 - Vacuum jets.
 - BDMPS-Z spectrum and energy loss.
 - Color coherence in original antenna setups: singlet antenna plus soft gluon emission spectrum in vacuum, in-medium antenna propagation case...
 - [C. A. Salgado's Jet Physics Lecture Student Lectures Day]
- How can we combine them?
- Further studies towards an unified description:
 - (1) color coherence in multiple emissions setups. [Salgado's Lecture]
 - (2) finite formation time corrections.

白 と く ヨ と く ヨ と …

Motivation: unifying existing knowledge

- Existing knowledge well understood separately:
 - Vacuum jets.
 - BDMPS-Z spectrum and energy loss.
 - Color coherence in original antenna setups: singlet antenna plus soft gluon emission spectrum in vacuum, in-medium antenna propagation case...
 - [C. A. Salgado's Jet Physics Lecture Student Lectures Day]
- How can we combine them?
- Further studies towards an unified description:
 - (1) color coherence in multiple emissions setups. [Salgado's Lecture]
 - (2) finite formation time corrections.

個 と く ヨ と く ヨ と …

In-medium finite formation time antenna

[In preparation: Mapping collinear in-medium parton splittings, F. Domínguez, G. Milhano, C. A. Salgado, K. Tywoniuk and V. Vila]

▲ロ > ▲圖 > ▲ 圖 > ▲ 圖 >

æ

$\gamma ightarrow qar{q}$: amplitude

$$\begin{split} \bar{\mathcal{M}}_{\gamma \to q\bar{q}}^{in} &= \frac{1}{2E} \; e^{i \frac{\vec{p}_1^2}{2zE} L + i \frac{\vec{p}_2^2}{2(1-z)E} L} \; \int_0^\infty dt \; \int_{\vec{k}_1, \vec{k}_2} \; \left[\mathcal{G}(\vec{p}_1, L; \vec{k}_1, t | zE) \; \bar{\mathcal{G}}(\vec{p}_2, L; \vec{k}_2, t | (1-z)E) \right]_{ij} \\ &\times \Gamma_{\lambda, \vec{s}, \vec{s}'}^{\gamma \to q\bar{q}}(\vec{k}, z) \; \mathcal{G}_0(\vec{k}_1 + \vec{k}_2, t | E) \end{split}$$

• \mathcal{G} $(\bar{\mathcal{G}}) \rightarrow$ quark (antiquark) propagators.

•
$$\Gamma(\vec{k},z) \rightarrow$$
 splitting vertex.

• \vec{k}_1 , $\vec{k}_2 \rightarrow$ transverse momentum after splitting.

<ロ> (四) (四) (三) (三) (三)

Eikonal expansion of the propagator

• The propagator in the momentum space:

$$\mathcal{G}(\vec{p}_1, t_1; \vec{p}_0, t_0) = \int_{\vec{x}_1, \vec{x}_2} e^{-i\vec{p}_1 \cdot \vec{x}_1 + i\vec{p}_0 \cdot \vec{x}_0} \mathcal{G}(\vec{x}_1, \vec{x}_0)$$
(1)

• The propagator in the configuration space described by a path integral:

$$\mathcal{G}(\vec{x}_1, \vec{x}_0) = \int_{\vec{r}(t_0) = \vec{x}_0}^{\vec{r}(t_1) = \vec{x}_1} \mathcal{D}\vec{r} \exp\left[i\frac{E}{2} \int_{t_0}^{t_1} ds \ \vec{r}^2\right] V(t_1, t_0; \vec{r}[s])$$
(2)

• The *eikonal* expansion of the propagator:

$$\mathcal{G}^{(0)}(\vec{x}_1, \vec{x}_0) = \mathcal{G}_0(\vec{x}_1 - \vec{x}_2, \tau) \ V(t_1, t_0; [\vec{x}_{cl}(s)])$$
(3)

A ■

Derivation of the spectrum

æ

イロト イヨト イヨト イヨト

Derivation of the spectrum

• Region I:

•
$$q$$
 and \bar{q} phases: $exp\left\{i\frac{p_{i\perp}^2}{2E_i}(t_2-t_1)\right\}$.

- Average of the Wilson lines: $exp\left\{-\frac{1}{12}\hat{q}n_{12}^2(t_2-t_1)^3\right\}$.
- Region II:
 - Average of a trace of four Wilson lines:

$$Q(t_L, t_2) = \frac{1}{N_c} \Big\langle Tr \Big[W_1(t_L, t_2) W_2^{\dagger}(t_L, t_2) W_{\bar{2}}(t_L, t_2) W_{\bar{1}}^{\dagger}(t_L, t_2) \Big] \Big\rangle$$

 It accounts for the accumulated effects of medium interactions over long distances.

The time-scales

• Kinematical formation time:

$$t_f = \frac{z(1-z)E}{\bar{\rho}^2} \tag{4}$$

• Decoherence time:

$$t_d \sim \left(\frac{1}{\hat{q}\theta^2}\right)^{1/3},\tag{5}$$

• Broadening time:

$$t_{broad} \sim \left(\frac{1}{\hat{q}\theta^2 L}\right)^{1/2}$$
 (6)

・ロト ・回ト ・ヨト

• Length of the medium: *L*.

æ

-∢ ≣ ≯

The real formation time

 $au \lesssim \textit{min}[\textit{t_f},\textit{t_d},\textit{t_{br}}]$

• The real formation time is governed by the smallest of the three physical time scales of the problem: either the kinematical formation time, the decoherence time or the broadening time.

- < ∃ >

< 17 <

The Lund diagram

æ

→ 御 → → 注 → → 注 →

Discussion of time-scales

• (A.1) $t_f < t_{broad} < t_d < L$: particles are created early in the medium and the dipole will decohere at a finite distance.

æ

▶ < 문 ▶ < 문 ▶</p>

Discussion of time-scales

• (A.2) $t_{broad} < t_f < t_d < L$: deviations from pure vacuum-like behaviour.

æ

Discussion of time-scales

• (A.3) $t_{broad} < t_d < t_f < L$: the formation of the dipole is strongly suppressed.

æ

- - 4 回 ト - 4 回 ト

Discussion of time-scales

 (A.4) t_f < L < t_d < t_{broad}: the created partons will never decohere in color and the splittings should follow a vacuum emission pattern.

æ

Discussion of time-scales

• (B) $t_f > L$: no medium modification is expected.

æ

▲ロ > ▲圖 > ▲ 圖 > ▲ 圖 >

Discussion of time-scales

• (A.1) and (A.4) are regions of vacuum-like emissions inside the medium.

æ

(4回) (4回) (4回)

The medium modification factor

$$\frac{dI^{med}}{dz \ d\vec{p}^2} = \frac{dI^{vac}}{dz \ d\vec{p}^2} \ (1 + F_{med}) \tag{7}$$

• The medium modifications factor out into F_{med} .

$$F_{med} = 2 \int_{0}^{\zeta_{L}} ds \left[\int_{s}^{\zeta_{L}} ds' \cos(s'-s) S_{12}(s',s) Q(\zeta_{L},s,s') - \sin(\zeta_{L}-s) S_{12}(\zeta_{L},s) \right]$$

$$(8)$$

$$\cos(s'-s) S_{12}(s',s) Q(\zeta_{L},s,s') \propto \left\langle \left| \bar{\mathcal{M}}_{q\bar{q}}^{in} \right| \right\rangle^{2}$$

$$\sin(\zeta_{L}-s) S_{12}(\zeta_{L},s) \propto \left\langle \bar{\mathcal{M}}_{q\bar{q}}^{in} \bar{\mathcal{M}}_{q\bar{q}}^{\dagger,out} \right\rangle$$

æ

イロト イヨト イヨト イヨト

Numerics: F_{med} in the Lund plane

æ

・ロト ・回ト ・ヨト ・ヨト

- In spite of the singlet antenna limitations it turns out to be a very convenient *laboratory*.
- The in-medium finite formation time antenna setup shows two regimes of vacuum-like emissions, lending support to the notion of purely vacuum-like emissions that are emitted inside the medium.
- The finite formation time scenario shows us an interesting theoretical guidance for MC.
- These computations go a step forward to obtain a complete description of a QCD cascade.

< ≣ >

Thanks for your attention

2

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶