

PETER STEINBERG, BNL FOR THE ATLAS COLLABORATION

ELECTROMAGNETIC PROCESSES WITH QUASIREAL PHOTONS IN PB+PB COLLISIONS: QED, QCD, AND THE QGP

HARD PROBES 2018: INTERNATIONAL CONFERENCE ON HARD AND ELECTROMAGNETIC PROBES OF HIGH-ENERGY NUCLEAR COLLISIONS

QUASI-REAL PHOTONS FROM NUCLEI

Experiments at RHIC & LHC have begun a systematic investigation of UPC, including:

• Boosted nuclei are intense source of quasi-real photons

- Typically treated using EPA (Weiszacker-Williams)
- Provides distributions for EM quanta from classical field Photons with $E \leq (\hbar c/R)\gamma$ are produced coherently (Z²)
 - Up to ~80 GeV for Pb+Pb @ 5.02 TeV, 1.4 TeV for p+p!

ATLAS DETECTOR

1. Precise charged-particle tracking in $|\eta| < 2.5$

ATLAS DETECTOR

2. Hadronic & EM calorimetry in $|\eta|$ < 4.9

ATLAS DETECTOR

3. Precise μ tracking in $|\eta| < 2.7$

Exclusive final-states <u>require</u> a fully-hermetic detector!

2. Hadronic & EM calorimetry in $|\eta| < 4.9$

1. Precise charged-particle tracking in $|\eta| < 2.5$

ZERO DEGREE CALORIMETERS

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/HION-2015-001/

M=173 GEV EXCLUSIVE DIMUON EVENT

Run: 287038 Event: 71765109 2015-11-30 23:20:10 CEST

Dimuons UPC Pb+Pb 5.02 TeV

EXCLUSIVE DIMUON PRODUCTION ATLAS-CONF-2016-025

NLO QED

dissociation

Exclusive dimuon event distributions corrected for trigger, reco & vertex efficiency, systematics cover whether long acoplanarity tails are all signal or all background

EXCLUSIVE DIMUON PRODUCTION

NLO QED

dissociation

Exclusive dimuon event distributions corrected for trigger, reco & vertex efficiency, systematics cover whether long acoplanarity tails are all signal or all background

STARLIGHT 1.1 provides good description of fully-corrected dimuon distributions, with hint of small excess at high $Y_{\mu\mu}$ (but NB missing physics: e.g. higher-order QED)

EXCLUSIVE DIMUON PRODUCTION

NLO QED

dissociation

Exclusive dimuon event distributions corrected for trigger, reco & vertex efficiency, systematics cover whether long acoplanarity tails are all signal or all background

STARLIGHT 1.1 provides good description of fully-corrected dimuon distributions, with hint of small excess at high $Y_{\mu\mu}$ (but NB missing physics: e.g. higher-order QED)

Next steps: proper handling of beyond LO effects, selections on ZDC to constrain impact parameter dependence!

LIGHT-BY-LIGHT SCATTERING

Decades old prediction of QED, but loops are sensitive to all sectors standard model which couple to photons, and BSM physics

Delbruck scattering Photon splitting

"direct" light-by-light

https://doi.org/10.1038/NPHYS4208

Same diagram, different initial states: direct LbyL not observed before 2016

Backgrounds from mid-ID dielectrons, as well as "central exclusive production" (QCD) of two-photons

LIGHT-BY-LIGHT MEASUREMENT

- Event selection

 - No tracks with p_T >100 GeV, $|\mathbf{\eta}|$ <2.5, one hit in pixel
 - Pair $m_{YY} > 6 \text{ GeV } p_{TYY} < 2 \text{ GeV}$
 - Pair acoplanarity Aco = 1 $|\Delta \phi|/\pi < 0.01$

https://doi.org/10.1038/NPHYS4208

Trigger

- transverse energy in calorimeter $5 < \Sigma E_{\rm T} < 200 \, {\rm GeV}$
- Veto on >1 hit in inner ring of either MBTS detector $(3 < |\mathbf{\eta}| < 3.8)$
- Veto on >10 hits in Pixel detector

Two photon candidates, $p_T > 3$ GeV, $|\eta| < 2.37$, each satisfying shower shape selections

EVIDENCE FOR LIGHT-BY-LIGHT

Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC

ATLAS Collaboration[†]

https://doi.org/10.1038/NPHYS4208

Looking forward to improvements in 2018!

3.8σ expected

PHOTONUCLEAR DIJETS

Run: 286717 Event: 36935568 2015-11-26 09:36:37 CEST Pb+Pb, √s_{NN} = 5.02 TeV

0 neutrons in ZDC

> Two or more jets (anti- k_T R=0.4) with $p_T > 15$ GeV, $|\mathbf{\eta}| < 4.4$ At least one with $p_T > 20$ GeV, $|\Delta \mathbf{\varphi}|_{12} > 0.2$, $m_{jets} > 35$ GeV

ATLAS-CONF-2017-011

IIRF UCLEAR PARTON ST 'S PRNRF NI

ATLAS-CONF-2017-011

Resolved processes "fill" gaps

 $\Sigma_A \Delta \eta < 3$ sum of gaps associated with $\Sigma_\gamma \Delta \eta > 2~~{
m photon-going}~{
m and}~{
m Pb-going}~{
m sides}$

Upper bound on Pb-going gap suppresses of $\gamma\gamma$ collisions and non-photonuclear UPC processes (e.g. µµ, ee, qq).

Expect no substantial contributions from hadronic diffrative processes.

PHOTONUCLEAR DIJETS

Good agreement with PYTHIA6 w/ γ spectrum reweighed to STARLIGHT 1.1

Access to e+A physics <u>now</u>: input to EIC program

$$H_{\rm T} \equiv \sum_{i} p_{{\rm T}\,i}, \quad x_{\rm A} \equiv \frac{m_{\rm jets}}{\sqrt{s}} e^{-\mathcal{Y}_{\rm jets}}$$

UPC DIMUONS IN "NON-UPC" EVENTS

However, you can still produce them when they don't!

ATLAS-HION-2018-11

UPC dimuon rates calculated assuming the nuclei "miss"

Can a "non-UPC" µµ event "see" the QGP?

EVENT AND MUON SELECTION

- Trigger
 - Dimuon trigger, each with 4 GeV at L1, and 4 GeV in HLT
- Muon selection
 - Tight selection, $p_T > 4$ GeV, $|\eta| < 2.4$
- Pair requirement
 - Opposite sign pairs with $4 < M_{\mu\mu} < 45 \text{ GeV}$
- > Applied to each muon as $w^{-1} = \epsilon_{trig} \epsilon_{reco}$

ATLAS-HION-2018-11

Selections on transverse and longitudinal impact parameter < 1.5 mm</p>

> Trigger & reconstruction efficiencies determined using J/Ψ

ANALYSIS STRATEGY

Acoplanarity: difference in azimuthal angle (cf. UPC dimuons)

$$\alpha \equiv 1 - \frac{|\phi^+ - \phi^-|}{\pi}$$

Asymmetry: difference in transverse momentum, divided by sum

$$A \equiv \left| \frac{p_{\mathrm{T}}^{+} - p_{\mathrm{T}}^{-}}{p_{\mathrm{T}}^{+} + p_{\mathrm{T}}^{-}} \right|$$

Combined impact parameter, larger for HF decays

$$d_{0\,\text{pair}} \equiv d_0^+ \oplus d_0^-$$

ATLAS-HION-2018-11

Decompose measured spectra for A and α to isolate contribution from signal µµ

Heavy flavor dimuons have a clear signature of larger impact parameters

BACKGROUND FRACTION FROM TEMPLATES

For each centrality selection:

- Create HF templates in $d_{0,pair}$, by selecting α >0.02 & A>0.15
 - Use PYTHIA8 template for centralities with low statistics
- Signal template by fully simulated STARLIGHT 1.1

Fit to form:

 $\mathcal{F}(d_{0 \text{ pair}}) \equiv f \mathcal{S}(d_{0 \text{ pair}}) + (1 - f) \mathcal{B}(d_{0 \text{ pair}})$

IND FRACTION FROM LEMPL ES

For each centrality selection:

- Create HF templates in $d_{0,pair}$, by selecting *α*>0.02 & *A*>0.15
 - Use PYTHIA8 template for centralities with low statistics
- Signal template by fully simulated **STARLIGHT 1.1**

Fit to form:

 $\mathcal{F}(d_{0 \text{ pair}}) \equiv f \mathcal{S}(d_{0 \text{ pair}}) + (1 - f) \mathcal{B}(d_{0 \text{ pair}})$

BACKGROUND DISTRIBUTIONS BY CUT INVERSION ATLAS-HION-2018-11

For each centrality selection:

Background for A: α >0.015

Background for α : A>0.06

Fit to 2nd order polynomial
 systematics by const. & linear fits

BACKGROUND SUBTRACTION

For each centrality selection:

Now focus on signal region

- Select $A_{\mu\mu} < 0.06$ to study α
- Select *α*<0.015 to study *A*
- Normalize background to signal fraction and subtract

γγ→µµ IN PB+PB

 $\boldsymbol{\alpha}$

CORRECTED SIGNAL DISTRIBUTIONS

- Simulated STARLIGHT events show no centrality-dep. broadening
 HF-determined backgrounds saturate tails
 - No obvious contribution from Drell-Yan, Y, or dissociative processes

$\gamma\gamma \rightarrow \mu\mu$ IN PB+PB

FITS TO DIMUON ACOPLANARITY

- Fit width of signal distributions using Gaussian + background template
 - > Alternate fit convolving over $\sigma(p_T)$
- > α width clearly grows with centrality
 - Asymmetry distributions have limited sensitivity due to momentum resolution

EXTRACTING RMS K_T FROM DIMUON DISTRIBUTIONS

Assume broadening from small transverse momentum imparted to each muon

<k²_T> extracted using

- \diamond < α^2 > from centrality-dependence
- Nominal p²_{T,avg} from fits to measured distributions

Centrality [%]	$\langle N_{\rm part} \rangle$	$p_{T avg}^{RMS}$ [GeV]	Gaussian fit			Convolution fit
			$\sigma_A(\times 10^2)$	$\sigma_{\alpha}(\times 10^3)$	$k_{\rm T}^{\rm RMS}$ [MeV]	$k_{\rm T}^{\rm RMS}$ [MeV]
0 - 10	359	7.0 ± 0.1	$1.79 \begin{array}{c} +0.10 \\ -0.09 \end{array}$	$3.3 ^{+0.4}_{-0.4}$	$64 ^{+10}_{-10}$	70^{+10}_{-10}
10 - 20	264	7.7 ± 0.4	$1.36 \substack{+0.12 \\ -0.10}$	$2.3 \substack{+0.3 \\ -0.3}$	38 +7 -7	42 +7
20-40	160	7.4 ± 0.3	$1.72 \begin{array}{c} +0.04 \\ -0.04 \end{array}$	$2.5 \substack{+0.2 \\ -0.2}$	46 +6	44 +5 -5
40 - 80	47	6.8 ± 0.3	$1.61 \begin{array}{c} +0.01 \\ -0.01 \end{array}$	$2.0 \ ^{+0.1}_{-0.1}$	31 +4 -4	32 +2 -2
> 80	-	7.0 ± 0.3	$1.55 \begin{array}{c} +0.01 \\ -0.01 \end{array}$	$1.54 \begin{array}{c} +0.02 \\ -0.02 \end{array}$	-	-

ATLAS-HION-2018-11

$$\langle \alpha^{2} \rangle = \langle \alpha^{2} \rangle_{0} + \frac{1}{\pi^{2}} \frac{\left\langle \vec{k}_{T}^{2} \right\rangle}{\left\langle p_{T \text{ avg}}^{2} \right\rangle}$$

nt σ

Nominal variance $<\alpha^2>_0$ from fit to >80% centrality (UPC)

$\gamma\gamma \rightarrow \mu\mu$ IN PB+PB

FITS TO EXTRACT RMS K_T

ATLAS-HION-2018-11

Additional per-muon RMS k_T beyond that found for >80% centrality (UPC) Small in absolute terms, but grows systematically with centrality up $\langle k_T \rangle \sim 70$ MeV Specific "tomographic" interpretation could be modified by other mechanisms for influencing muons in the context of a heavy ion collision (e.g. strong EM fields)

$\gamma\gamma \rightarrow \mu\mu$ IN PB+PB

NON-UPC DILEPTONS AT LHC AND RHIC

- ATLAS data compares non-UPC data to >80% (UPC)
- - Similar spectral shape from both models
 - Data sees larger RMS(p_T) than models
- ▶ Some p_T broadening seems to be a generic feature

STAR, arxiv:1806.02295, Phys. Rev. Lett. 121, 132301 (2018)

STAR compares 60-80% central to EPA-based calculations

STAR postulates it might be residual B field from initial state

EM PROCESSES IN PB+PB COLLISIONS

CONCLUSIONS

EM-induced processes in Pb+Pb collisions in ATLAS teaches us about :

29

EM PROCESSES IN PB+PB COLLISIONS

CONCLUSIONS

EM-induced processes in Pb+Pb collisions in ATLAS teaches us about :

EM PROCESSES IN PB+PB COLLISIONS

CONCLUSIONS

EM-induced processes in Pb+Pb collisions in ATLAS teaches us about :

In the second second

