

Coherent J/Ψ photoproduction in Pb-Pb collisions with nuclear overlap with ALICE at the LHC

L. Massacrier for the ALICE Collaboration Institut de Physique Nucléaire d'Orsay

J/Ψ photoproduction and Ultra-Peripheral collisions(UPC)

- \square The EM field of Pb nuclei can be described as beam of quasi-real photons (number of photons proportional to \mathbb{Z}^2)
- ☐ UPC : interactions with b larger than the sum radii of the incoming nuclei. Involve at least one photon.
 - Hadronic interaction strongly suppressed
 - Electromagnetic interactions dominant

J/Ψ photoproduction and Ultra-Peripheral collisions(UPC)

- \square The EM field of Pb nuclei can be described as beam of quasi-real photons (number of photons proportional to \mathbb{Z}^2)
- ☐ UPC : interactions with b larger than the sum radii of the incoming nuclei. Involve at least one photon.
 - Hadronic interaction strongly suppressed
 - Electromagnetic interactions dominant
- \square Photoproduction of vector meson (VM) in UPC has a clean experimental signature:
 - ❖ Very low *p*_T production
 - Large rapidity gaps
- ☐ Coherent photoproduction of VM
 - & couples coherently to all nucleons
 - $< p_T > J/\Psi \sim 50 \text{ MeV}$
 - No breaking of target nucleus

- ☐ Incoherent photoproduction of VM
 - χ couples to part of nucleus
 - $< p_T > J/\Psi \sim 500 \text{ MeV}$
 - Usually target nucleus breaks

First observation of a very low $p_T J/\Psi$ excess in peripheral AA collisions

UPC candidate in the central barrel and muon spectrometer

- ☐ Exclusive event
- Only vector meson decay detected
- □ VM photoproduction in UPC well-known process used to probe gluon distribution in the nucleus target at low-x

Hadronic interaction with dimuon candidate

- J/Ψ very low p_T
 excess observed
 for the first time
 in peripheral
 Pb-Pb collisions
 (Run-1 data)
- □ Interpreted as coherent J/Ψ photoproduction for b < 2 x R_{Pb}!

What can we learn from coherent J/Ψ photoproduction in AA collisions with nuclear overlap?

- \Box Affects the J/ Ψ R_{AA} measurement at very low p_T and therefore the study of hot nuclear matter effects in Pb-Pb collisions
- ☐ Opens new theoretical challenges:
 - How can the coherence condition survive when the nuclei is broken during the hadronic interaction? Do only spectator nucleons participate to the coherence?
- ☐ A potential new probe of charmonium color screening in the QGP?
 - ❖ Could be formed at the early stages of the collisions
 - Could be dissociated by color screening
 - Recombination of $c\bar{c}$ pairs would not contribute significantly to the very low p_T J/ Ψ yield

- \square A novel way to access σ_{XPb} when combined to UPC measurement
 - See : J.G. Contreras, arXiv:1610.03350

The ALICE apparatus (Run-II)

Central barrel: $J/\Psi \rightarrow e^+e^-$ |y| < 0.9

2015 Pb-Pb (Run-II) $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ $L_{int} \sim 10 \text{ }\mu\text{b}^{-1}$

ITS: tracking TPC: tracking, PID

Muon spectrometer :

 $J/\Psi \rightarrow \mu^+\mu^-$ 2.5 < y < 4

2011 Pb-Pb (Run-I) $\sqrt{s_{NN}} = 2.76 \, \text{TeV}$ $L_{\text{int}} \sim 70 \, \mu \text{b}^{\text{-}\text{I}}$ 2015 Pb-Pb (Run-II) $\sqrt{s_{NN}} = 5.02 \, \text{TeV}$ $L_{\text{int}} \sim 200 \, \mu \text{b}^{\text{-}\text{I}}$

Muon tracker: tracking Muon trigger: triggering

ITS: vertex reconstruction

ZDC: background rejection

V0 scintillators: triggering, centrality determination, background rejection

Coherent J/ Ψ photoproduction at forward rapidity in peripheral Pb-Pb at $\sqrt{s_{NN}} = 2.76$ TeV

- \Box Effect of the observed very low p_T J/ ψ excess on the hadronic R_{AA}
 - ❖ For p_T < 0.3 GeV/c, J/ ψ R_{AA} as large as 7
 - None of the recombination models predict such a pattern at LHC energies
 - ❖ Model with photoproduction + hadroproduction with QGP effects can reproduce the R_{AA} (W. Shi, PLB 777 (2018) 399-405)
- ☐ Measured coherent cross section

Cent. (%)	$N_{ m AA}^{{ m excess}J/\psi}$	$d\sigma_{J/\psi}^{ m coh}/dy~(\mu m b)$
0–10	< 251	< 318
10-30	< 237	< 290
30–50	$62\pm37\pm21$	$73 \pm 44^{+26}_{-27} \pm 10$
50–70	$50\pm14\pm5$	$58 \pm 16^{+8}_{-10} \pm 8$
70–90	$51 \pm 9 \pm 3$	$59 \pm 11^{+7}_{-10} \pm 8$

- ☐ Significance of the excess yield :
 - **❖** In centrality 70-90% : 5.4σ
 - **❖** In centrality 50-70% : 3.4σ
 - In centrality 30-50%: 1.4σ

Coherent J/ Ψ photoproduction at forward rapidity in peripheral Pb-Pb at $\sqrt{s_{NN}}$ = 2.76 TeV and model comparisons

- Standard photon flux (UPC)
- Effective photon flux (considering nuclear overlap) / upper limit
- Effective photon flux (considering spectator nucleons only) / lower limit
- ALICE data ALICE exp uncertainties
- → Best agreement with « lower limit » photon flux

- ☐ Energy dependent hot-spot model calculations
- \Box Extrapolation of \upgamma p to \upgamma Pb interactions with:
 - Gribov-Glauber calculation (GG)
 - Geometric Scaling (GS)
- → Model describes both UPC and peripheral data (better agreement with GS calculation)

Coherent J/ Ψ photoproduction at forward rapidity in peripheral Pb-Pb at $\sqrt{s_{NN}}$ = 2.76 TeV and model comparisons

☐ Strong interactions in the overlapping region of incoming nuclei may disturb the coherent production, leaving room for different coupling assumptions:

```
    -N + N
    -N + S
    -N + S
```

- □ ALICE Run-I data consistent with all 4 scenarios within uncertainties
- □ Need more precise data and measurement towards most central collisions (challenging!) to be able to disentangle the different scenarios

Coherent J/ Ψ photoproduction at mid rapidity in peripheral Pb-Pb at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

- \Box Very low p_T J/Ψ yield excess also observed at mid-rapidity in the dielectron channel, in peripheral collisions
- \Box Good resolution at mid-rapidity allows for the excess p_T distribution measurement

- \Box Uncorrected dielectron p_T distribution in the J/ Ψ mass range : same trend as coherent photoproduction UPC
- → Strengthens the hypothesis that the excess origin is coherent photoproduction
- \Box Differences can be seen at high p_{\top} since contribution from hadronic J/ Ψ is not subtracted

Coherent J/ Ψ photoproduction at mid rapidity in peripheral Pb-Pb at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

- \Box Coherent J/Ψ photoproduction cross section has been extracted from a template fit (STARLIGHT + HIJING MC) of the corrected J/Ψ yield p_T distribution
- □ Relative contributions of the various processes are fixed to the UPC measurement values (overall scale is free)

Coherent J/ Ψ photoproduction at mid rapidity in peripheral Pb-Pb at $\sqrt{s_{NN}}$ = 5.02 TeV

☐ Cross section comparison with models

- ☐ Energy dependent hot-spot model
- Gribov-Glauber calculation (GG)
 Geometric Scaling (GS)
- ☐ Color Glass Condensate model
- __
- ☐ GBW dipole model
 - modification of photon flux (2017)
 - modification of photon flux + photonuclear cross section (2018)
- Qualitative agreement is found with all models (apart the first version of GBW (2017) in which the modification of the photonuclear cross section was not accounted for)

Coherent J/ Ψ photoproduction at forward rapidity in peripheral Pb-Pb at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ *NEW*

- \Box Very low p_T J/ ψ excess also observed at forward rapidity at $\sqrt{s_{NN}}$ = 5.02 TeV in peripheral events
- \Box A decrease of the dimuon $< p_T >$ at the J/ ψ mass is clearly seen at very low p_T in the centrality ranges 50-70%, 70-90% (hint in 30-50%) with respect to the centrality range 0-10%
- \Box The decrease of the background $< p_T >$ in the centrality range 70-90% could be an indication of the presence of $χχ \to μ+μ$ -

Coherent J/ Ψ photoproduction at forward rapidity in peripheral Pb-Pb at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ *NEW*

- Large J/Ψ signal almost background free in the centrality range 70-90% and for $p_T(_{\mu+\mu-}) < 0.3 \text{ GeV}/c$
- ☐ Increase of statistics ~ factor 10 with respect to Run-I analysis
- Hadronic J/Ψ background subtracted thanks to a modelization which uses as input the J/Ψ p_T distribution measurement in pp collisions at 5.02 TeV, the J/Ψ R_{AA} measurement in Pb-Pb at 5.02 TeV, and the Axε of hadronic J/Ψ from MC
- \Box Significance of the raw excess : I4σ (centrality 70-90%), I0σ (centrality 50-70%)

Centrality	Raw N _{J/ψ} excess
50-70%	628 ± 39 (stat) ± 46 (syst)
70-90%	477 ± 26 (stat) ± 21 (syst)

Coherent J/Ψ photoproduction at forward rapidity in peripheral Pb-Pb: comparison 2.76 TeV versus 5 TeV *NEW*

- \Box Coherent J/ ψ yield increases by \sim factor 2.5 in centrality range 70-90% between the two energies
- □ No strong centrality dependence is observed within uncertainties between 50-70% and 70-90% centrality ranges
- \Box Coherent J/ ψ cross section at 5.02 TeV is extracted from the yield ratio and cross section measurement at 2.76 TeV
- \Box Cross section increases by \sim a factor 2.5 in the centrality range 70-90% with respect to 2.76 TeV
- Dominant uncertainty from unknown energy dependence of the fraction of incoherent J/ ψ and J/ ψ from coherent $\psi(2S)$ decay \rightarrow will improve thanks to new UPC measurement

Coherent J/ Ψ photoproduction at forward rapidity in peripheral Pb-Pb at $\sqrt{s_{NN}} = 5.02$ TeV and comparison with models *NEW*

Centrality 70-90%

Gribov-Glauber calculation (GG)
Geometric Scaling (GS)

- GBW dipole model (2018)

 IIM model (CGC)
- As at $\sqrt{s_{NN}}$ = 2.76 TeV, the peripheral coherent J/ψ cross section at $\sqrt{s_{NN}}$ = 5 .02 TeV agrees qualitatively with the same models in all centrality ranges
- Dominant uncertainty from unknown energy dependence of the fraction of incoherent J/ ψ and J/ ψ from coherent $\psi(2S)$ decay \rightarrow will improve thanks to new UPC measurement

Coherent J/ Ψ photoproduction at forward rapidity in peripheral Pb-Pb at $\sqrt{s_{NN}} = 5.02$ TeV and comparison with models *NEW*

Centrality 50-70%

- GBW dipole model (2018)

 IIM model (CGC)
- As at $\sqrt{s_{NN}}$ = 2.76 TeV, the peripheral coherent J/ψ cross section at $\sqrt{s_{NN}}$ = 5 .02 TeV agrees qualitatively with the same models in all centrality ranges
- Dominant uncertainty from unknown energy dependence of the fraction of incoherent J/ ψ (f_I) and J/ ψ from coherent ψ (2S) decay (f_D)
- → will improve thanks to new UPC measurement

Conclusion

- Excess in the yield of J/ψ at very low p_T observed in peripheral Pb-Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV confirmed both at mid and forward rapidity at $\sqrt{s_{NN}}$ = 5.02 TeV
- \Box J/Ψ coherent photoproduction mechanism seems supported by the measured shape of the excess p_T distribution at midrapidity
- □ Results from new forward analysis! → will be extended towards more central events (stay tuned!)
- ☐ Models used to describe UPC data and modified to account for nuclear overlap region qualitatively reproduce the data
- ☐ Future 2018 Pb-Pb run opens new experimental perspectives:
 - \clubsuit The centrality dependence of the J/ Ψ excess p_T distribution at mid-rapidity
 - ❖ Forward rapidity cross section measurement in most central collisions
 - Excess polarization
 - Other vector mesons
 - Combine UPC and peripheral measurements to extract $\sigma_{\gamma Pb}(y)$ and $\sigma_{\gamma Pb}(-y)$

Back up

☐ Charmonium coherent photoproduction and hadroproduction treated consistently with modifications from both cold and hot nuclear matter effects

Coherent J/Ψ photoproduction at forward rapidity in peripheral Pb-Pb: systematic uncertainties *NEW*

☐ Systematic uncertainties on the yield ratio

•		
Source	2.76 TeV	5.02 TeV
Signal extraction	5.9-10%	4.4-7.3%
Centrality dependence of efficiency loss	0-0.5%	0-0.5%
MC input	3%	3%
Tracking efficiency	11%	3%
Trigger efficiency	3.6 %	2.8%
Matching efficiency	1%	1%
Normalisation	3.6%	0.5%
Uncertainty on the energy dependence of the fraction of incoherent J/ψ (f _I) and J/ψ from coherent ψ(2S) decay (f _D)	20%	

☐ Systematic uncertainties on the cross section

Source	5.02 TeV	
Signal extraction	4.4-7.3%	
Centrality dependence of efficiency loss	0-0.5%	
MC input	3%	
Tracking efficiency	3%	
Trigger efficiency	2.8%	
Matching efficiency	1%	
Normalisation	0.5%	
Uncertainty on the energy dependence of the fraction of incoherent J/ψ (f _I) and J/ψ from coherent ψ(2S) decay (f _D)	20%	
BR	1%	
σ_{PbPb}	XX %	

 $[\]Box$ Dominant uncertainty from unknown energy dependence of f_I+ f_D \rightarrow will improve thanks to new UPC measurement