Initial-state in heavy-ion collisions at colliders: Experimental summary

Émilien Chapon

CERN

Hard Probes 2018 Aix-les-Bains, France

Initial state

Characterising the initial state of heavy-ion collisions:

• Spatial distribution: geometry (Glauber...)

Initial state

Characterising the initial state of heavy-ion collisions:

- Spatial distribution: geometry (Glauber...)
- Momentum distribution: nuclear parton distribution functions

Initial state

Characterising the initial state of heavy-ion collisions:

- Spatial distribution: geometry (Glauber...)
- Momentum distribution: nuclear parton distribution functions

Future experimental input

v_2 in Z-tagged events in pp

- Select higher Q² (smaller b? different ε₂?) with Z bosons
- First measurement of 2-particle correlations in high-pileup samples (up to 20% PU correction)
- v₂ in Z-tagged events shows no dependence on multiplicity
- 8 ± 6% larger than inclusive 13 TeV pp (but different p_T spectrum)

Initial state geometry

Collision geometry in PbPb: W and Z bosons

- W and Z bosons not expected to be affected by the strongly interacting QGP
- Use them for testing the initial state geometry (Glauber model)
- Measurement uncertainties smaller than normalisation (T_{AA}) ones! Could define $Z_{AA} = \frac{N_{AA}^X \cdot \sigma_{pp}^Z}{N_{AP}^X \cdot \sigma_{AA}^Z}$?

J. Kremer (ATLAS), A. Sarkar (ALICE)

- Similar hint of excess in peripheral collisions for both W and Z $% \left({Z_{\rm s}} \right) = \left({Z_{\rm s}} \right) \left({Z$

Initial state geometry

Collision geometry in PbPb: W and Z bosons

- W and Z bosons not expected to be affected by the strongly interacting QGP
- Use them for testing the initial state geometry (Glauber model)
- Measurement uncertainties smaller than normalisation ٠ (T_{AA}) ones! Could define $Z_{AA} = \frac{N_{AA}^{2} \cdot \sigma_{pp}^{2}}{N_{Nn}^{2} \cdot \sigma_{AA}^{2}}$?

J. Kremer (ATLAS), A. Sarkar (ALICE)

ALL-PUB-146575

Glauber in pPb

- Can also use W bosons to test Glauber in pPb
- Centrality and $\langle N_{coll} \rangle$ estimated using neutron zero degree calorimeters + Glauber model with an "hybrid method"
- · W boson production consistent with geometric expectation

- Needed for \sim any cross section or R_{AB} prediction
- In pPb: correlation between measured kinematics and probed x_{Pb}
- PbPb can add some information

W and Z bosons in pPb

• CMS W bosons (8.16 TeV):

H. Kim (CMS), A. Sarkar (ALICE)

- Experimental uncertainties smaller than nPDF ones
- Inconsistent with free proton PDF, better agreement with EPPS16 than nCTEQ15 (amount of shadowing)
- Consistency with 5.02 TeV data checked

E. Chapon (CERN)

W and Z bosons in pPb

• CMS W bosons (8.16 TeV):

H. Kim (CMS), A. Sarkar (ALICE)

- Experimental uncertainties smaller than nPDF ones
- Inconsistent with free proton PDF, better agreement with EPPS16 than nCTEQ15 (amount of shadowing)
- Consistency with 5.02 TeV data checked
- ALICE W and Z bosons (5.02 TeV):
 - Inconclusive given current uncertainties

Drell-Yan in pAu

and EPPS16

•

Inconclusive due to large

uncertainties in the data

Y.H. Leung (PHENIX)

p+Au, -2.2 < y < -1.2 (Au-going)

1/2πp_Tα^{*}ေ/dydp_[nb(c/GeV)²/nucleon] ငြ န 10^{-1} 10^{-1} 10^{-1} 10^{-1} 10^{-2} 10^{-2} 10^{-2} 10^{-2} 10^{-2} 10^{-2} p+Au, -2.2 < y < -1.2 (Au-going) p+Au, 1.2 < y
2.2 (p-going) p+Au, 1.2 < y < 2.2 (p-going) • p+p, 1.2 < ly 1 < 2.2 • p+p, 1.2 < ly_i < 2.2 10⁻² (arXiv:1805.02448) (arXiv:1805.02448) PH ENIX PHĚENIX preliminary preliminary PYTHIAv6 - k_τ = 1.1GeV/c NLO (J.Qiu) - k-fac. = 1.23 --NLO (Vitev et al.), u=Q • R_{pAu} consistent with unity Drell-Yan $\rightarrow \mu^{+}\mu^{-}$ Drell-Yan $\rightarrow \mu^+\mu^-$ 4.8 < m [GeV/c²] < 8.2 √s_{NN} = 200 GeV √s_{MM} = 200 GeV R_{p+Au} $\mathsf{R}_{\mathsf{p}+\mathsf{Au}}$ EPPS16 + PYTHIA (Au-going) EPPS16 + PYTHIA (Au-going) EPPS16 + PYTHIA (p-going) R_{p+Au} EPPS16 + PYTHIA (p-going) R_{p+Au} ο 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 p_{τ,μμ}[GeV/c 12 14 m_[GeV/c²] 6 8 10

E. Chapon (CERN)

W and Z bosons in PbPb

J. Kremer (ATLAS), A. Sarkar (ALICE)

- ATLAS W bosons: inconclusive (note also: NLO vs NNLO)
- ALICE Z bosons: hint of nuclear effects

Dijets in pPb

- Probing gluon nPDF over a wide range of x_{Pb}, from shadowing to anti-shadowing and EMC
- pPb data already included in EPPS16
- pPb/pp less sensitive to pp modelling

Interlude: free proton PDF

J. Kremer (ATLAS), Y. Go (CMS)

Free protons are the reference! But are they that well known?

- Some tension between dijet data and NLO pQCD
- NNLO pQCD with recent PDFs fails to reproduce ATLAS W/Z data at $5.02\,{\rm TeV}$
 - Note1: 1.9% luminosity uncertainty!

Interlude: free proton PDF

J. Kremer (ATLAS), Y. Go (CMS)

Free protons are the reference! But are they that well known?

- Some tension between dijet data and NLO pQCD
- NNLO pQCD with recent PDFs fails to reproduce ATLAS W/Z data at $5.02\,{\rm TeV}$
 - Note1: 1.9% luminosity uncertainty!
 - Note2: consistent ATLAS 5.02 and 7 TeV... but not CMS 8 TeV? Puzzle

Photons in pPb

M. Spousta (ATLAS), N. Schmidt (ALICE)

- Photons also expected to be sensitive to initial state (isospin + nPDF)
- No nPDF constraints within current precision
- Also differential in multiplicity in ALICE

Ultra-peripheral collisions

Using the lead ions as a source of quasi-real photons

- Can be used as a probe of the projectile structure
- Sensitivity to nPDF

Quarkonia in γp collisions

- Exclusive J/ ψ and ψ (2S) in 13 TeV pp (LHCb)
- Exclusive $\Upsilon(1S)$ in 5.02 TeV pPb (CMS)
- Good agreement with models (NLO pQCD, gluon saturation)

$\gamma {\rm Pb}$ collisions

S. Belin (LHCb), L. Massacrier (ALICE)

- LHCb: coherent J/ ψ production
- ALICE: coherent J/ ψ production with nuclear overlap (in two centrality bins)
- Models implement different initial state (gluon saturation...) and quarkonium production mechanisms

Photonuclear dijets

P. Steinberg (ATLAS)

- Selecting γPb interactions using ZDC + rapidity gaps
- Comparison with PYTHIA $(\gamma \text{ spectrum reweighted to } STARLIGHT)$
- Sensitivity to nPDF

Open heavy flavour hadrons

C. Terrevoli (ALICE), Y. Zhang (LHCb), M. Dumancic (ATLAS)

Many precise open heavy flavour measurements

D⁰,

Open heavy flavour hadrons

C. Terrevoli (ALICE), Y. Zhang (LHCb), M. Dumancic (ATLAS)

D⁰, Λ⁺_c,

CERN

E. Chapon (CERN)

Open heavy flavour hadrons

C. Terrevoli (ALICE), Y. Zhang (LHCb), M. Dumancic (ATLAS)

Many precise open heavy flavour measurements

• D⁰,
$$\Lambda_c^+$$
, B⁺, J/ $\psi \leftarrow$ b..

Open heavy flavour hadrons

C. Terrevoli (ALICE), Y. Zhang (LHCb), M. Dumancic (ATLAS)

- Many precise open heavy flavour measurements
 - D⁰, Λ_c^+ , B⁺, J/ $\psi \leftarrow$ b...
- Being considered for constraining nPDF
 - Precise measurements, access to low x (down to < 10⁻⁶)!
 - Some theoretical issues being discussed

Quarkonia

A. Lardeux (ALICE), G. Manca (LHCb), Z. Liu (STAR)

Large-x: intrinsic charm

- Probing large x with LHCb in fixed-target mode (SMOG)
- No evidence for substantial valence-like intrinsic charm contribution

Forward photons in ALICE

- FoCal: new forward calorimeters for installation in 2024-2025
- Probing low x nPDF using photons
- Complementary to forward heavy flavour measurements

Future facilities

A. Kusina, C. Hadjidakis, J.-P. Lansberg (AFTER), A. Deshpande, R. Yoshida (elC), A. Dainese (FCC-AA)

Uncharted kinematic territory and precision:

- AFTER@LHC (fixed target with ALICE or LHCb): high-x frontier
- elC, LHeC, FCC-eh: large (x, Q²) coverage, high precision

Future experiments

Initial-state in heavy-ion frog collisions

https://abstrusegoose.com/156

E. Chapon (CERN)