Initial-state in heavy-ion collisions at colliders: Experimental summary

Émilien Chapon

CERN

Hard Probes 2018
Aix-les-Bains, France
Characterising the initial state of heavy-ion collisions:

- Spatial distribution: geometry (Glauber...)

```
```

```
```

```
```
Initial state

Characterising the initial state of heavy-ion collisions:

- Spatial distribution: geometry (Glauber...)
- Momentum distribution: nuclear parton distribution functions
Characterising the initial state of heavy-ion collisions:

- Spatial distribution: geometry (Glauber...)
- Momentum distribution: nuclear parton distribution functions

Future experimental input
\(\nu_2 \) in Z-tagged events in pp

- Select higher \(Q^2 \) (smaller \(b \)? different \(\epsilon_2 \)?) with Z bosons
- First measurement of 2-particle correlations in high-pileup samples (up to 20% PU correction)
- \(\nu_2 \) in Z-tagged events shows no dependence on multiplicity
- \(8 \pm 6\% \) larger than inclusive 13 TeV pp (but different \(p_T \) spectrum)
Collision geometry in PbPb: W and Z bosons

- W and Z bosons not expected to be affected by the strongly interacting QGP
- Use them for testing the initial state geometry (Glauber model)
- Measurement uncertainties smaller than normalisation \((T_{AA})\) ones! Could define \(Z_{AA} = \frac{N_{AA}^X \cdot \sigma_{pp}^Z}{N_{pp}^X \cdot \sigma_{AA}^Z}\)?
- Similar hint of excess in peripheral collisions for both W and Z
Collision geometry in PbPb: W and Z bosons

- W and Z bosons not expected to be affected by the strongly interacting QGP
- Use them for testing the initial state geometry (Glauber model)
- Measurement uncertainties smaller than normalisation (T_{AA}) ones! Could define $Z_{AA} = \frac{N_{AA}^X \cdot \sigma_{pp}^Z}{N_{pp}^X \cdot \sigma_{AA}^Z}$?
- Similar hint of excess in peripheral collisions for both W and Z

ATLAS Preliminary

Pb+Pb, $\sqrt{s_{NN}}=5.02$ TeV, 0.49 nb$^{-1}$

$W \rightarrow \mu \nu$

\mathbf{W}^*: Data

POWHEG (CT10 NLO) $\times k_{NNLO}$

\mathbf{W}: Data

POWHEG (CT10 NLO) $\times k_{NNLO}$
Glauber in pPb

- Can also use W bosons to test Glauber in pPb
- Centrality and $\langle N_{\text{coll}} \rangle$ estimated using neutron zero degree calorimeters + Glauber model with an “hybrid method”
- W boson production consistent with geometric expectation

![Graphs showing $\sigma_{W} / \langle N_{\text{coll}} \rangle$ vs. centrality class](image)
Partonic content in the initial state

- Needed for \sim any cross section or R_{AB} prediction
- In pPb: correlation between measured kinematics and probed x_{Pb}
- PbPb can add some information
CMS W bosons (8.16 TeV):
- Experimental uncertainties smaller than nPDF ones
- Inconsistent with free proton PDF, better agreement with EPPS16 than nCTEQ15 (amount of shadowing)
- Consistency with 5.02 TeV data checked

ALICE W and Z bosons (5.02 TeV):
Inconclusive given current uncertainties
W and Z bosons in pPb

- CMS W bosons (8.16 TeV):
 - Experimental uncertainties smaller than nPDF ones
 - Inconsistent with free proton PDF, better agreement with EPPS16 than nCTEQ15 (amount of shadowing)
 - Consistency with 5.02 TeV data checked

- ALICE W and Z bosons (5.02 TeV):
 - Inconclusive given current uncertainties

H. Kim (CMS), A. Sarkar (ALICE)
- R_{pAu} consistent with unity and EPPS16
- Inconclusive due to large uncertainties in the data
W and Z bosons in PbPb

- **ATLAS W bosons**: inconclusive (note also: NLO vs NNLO)
- **ALICE Z bosons**: hint of nuclear effects
Dijets in pPb

- Probing gluon nPDF over a wide range of x_{Pb}, from shadowing to anti-shadowing and EMC
- pPb data already included in EPPS16
- pPb/pp less sensitive to pp modelling
Interlude: free proton PDF

Free protons are the reference! But are they that well known?

- Some tension between dijet data and NLO pQCD
- NNLO pQCD with recent PDFs fails to reproduce ATLAS W/Z data at 5.02 TeV
 - Note1: 1.9% luminosity uncertainty!
Interlude: free proton PDF

Free protons are the reference! But are they that well known?

- Some tension between dijet data and NLO pQCD
- NNLO pQCD with recent PDFs fails to reproduce ATLAS W/Z data at 5.02 TeV
 - Note1: 1.9% luminosity uncertainty!
 - Note2: consistent ATLAS 5.02 and 7 TeV... but not CMS 8 TeV? Puzzle
Photons in pPb

- Photons also expected to be sensitive to initial state (isospin + nPDF)
- No nPDF constraints within current precision
- Also differential in multiplicity in ALICE
Ultra-peripheral collisions

Using the lead ions as a source of quasi-real photons

- Can be used as a probe of the projectile structure
- Sensitivity to nPDF

Photon-pomeron:
production of vector mesons (sensitivity to nPDF)

Photo-nuclear:
jet photoproduction (probe nPDF directly)
Quarkonia in γp collisions

- Exclusive J/ψ and $\psi(2S)$ in 13 TeV pp (LHCb)
- Exclusive $\Upsilon(1S)$ in 5.02 TeV pPb (CMS)
- Good agreement with models (NLO pQCD, gluon saturation)
\(\gamma \text{Pb} \) collisions

- LHCb: coherent \(J/\psi \) production
- ALICE: coherent \(J/\psi \) production with nuclear overlap (in two centrality bins)
- Models implement different initial state (gluon saturation...) and quarkonium production mechanisms
Photonuclear dijets

- Selecting γPb interactions using ZDC + rapidity gaps
- Comparison with PYTHIA (γ spectrum reweighted to STARLIGHT)
- Sensitivity to nPDF
Open heavy flavour hadrons

C. Terrevoli (ALICE), Y. Zhang (LHCb), M. Dumancic (ATLAS)

- Many precise open heavy flavour measurements
 - D^0,
Open heavy flavour hadrons

- Many precise open heavy flavour measurements
 - D^0, Λ_c^+,
Open heavy flavour hadrons

- Many precise open heavy flavour measurements
 - D^0, Λ_c^+, B^+, $J/\psi \leftarrow b$...

C. Terrevoi (ALICE), Y. Zhang (LHCb), M. Dumancic (ATLAS)
Open heavy flavour hadrons

C. Terrevoli (ALICE), Y. Zhang (LHCb), M. Dumancic (ATLAS)

- Many precise open heavy flavour measurements
 - D^0, Λ_c^+, B^+, $J/\psi \leftarrow b$...
- Being considered for constraining nPDF
 - Precise measurements, access to low x (down to $<10^{-6}$)!
 - Some theoretical issues being discussed

ATLAS Preliminary

$p+Pb$ | $\sqrt{s_{\text{NN}}} = 8.16$ TeV, 76.3 μb

Prompt D^0 Production

- Data $\times 10^3$, $0.0 < y^* < 0.5$
- Data $\times 10^2$, $-0.5 < y^* < 0.0$
- Data $\times 10^1$, $-1.0 < y^* < -0.5$
- Data $\times 10^0$, $-1.5 < y^* < -1.0$

ALICE

$p+Pb$, $\sqrt{s_{\text{NN}}} = 5.02$ TeV

$-0.96 < y < 0.04$

- Λ_c^+
- D mesons (average D^0, D^+, D^\star)
- D^0 meson

LHCb

pPb, $\sqrt{s_{\text{NN}}} = 5$ TeV

- Prompt D^\star, J/ψ
- $p_T < 10$ GeV/c

LHCb

pPb, $\sqrt{s_{\text{NN}}} = 5$ TeV

- Prompt D^\star, J/ψ
- $1.5 < y^* < 4.0$

LHCb

pPb, $\sqrt{s_{\text{NN}}} = 8.16$ TeV

- Prompt D^\star, J/ψ
- $2 < p_T < 20$ GeV/c
Quarkonia

Also quarkonia:

- Many precise quarkonium measurements
- Some theoretical complications
Large-\(x\): intrinsic charm

- Probing large \(x\) with LHCb in fixed-target mode (SMOG)
- No evidence for substantial valence-like intrinsic charm contribution
Future experiments

Forward photons in ALICE

- **FoCal**: new forward calorimeters for installation in 2024-2025
- Probing low x nPDF using photons
- Complementary to forward heavy flavour measurements

x-distributions from NLO pQCD

- $\sqrt{s} = 8.8$ TeV
- $5 < p_T < 20$ GeV
- $4 < \eta < 5$

NPDF3.1 NNLO, $Q^2 = 5$ GeV

- **DIS+DY baseline**
- **DIS+DY baseline + FoCal**
Future facilities

A. Kusina, C. Hadjidakis, J.-P. Lansberg (AFTER), A. Deshpande, R. Yoshida (eIC), A. Dainese (FCC-AA)

Uncharted kinematic territory and precision:

- **AFTER@LHC** (fixed target with ALICE or LHCb):
 - high-x frontier

- **eIC, LHeC, FCC-eh**:
 - large (x, Q^2) coverage, high precision
Future experiments

Initial-state in heavy-ion frog collisions

https://abstrusegoose.com/156

FUN FACT: Ex-particle-physicists make the worst biologists.