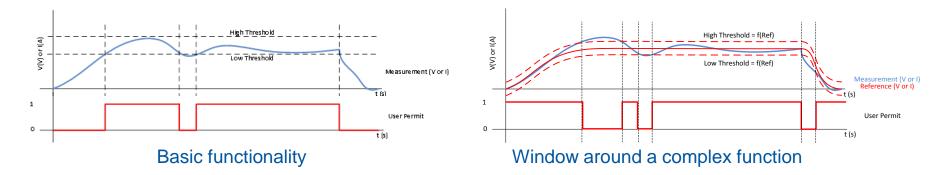


EPC BIS Interface

David Nisbet 28 April 2017

Content

- Introduction
- Requirements
- Implementation
- Examples in the PS and SPS
- Conclusion


Introduction

- Several power converters throughout the accelerator complex are required to interface to the Beam Interlock System
- The power converter group is deploying the latest generation of Function Generator and Controller throughout the CERN complex
 - The consolidation road map foresees the entire PS proton chain using the FGC3 following LS2
 - Also the SPS NCODs will be replaced during LS2
 - LHC will use FGC2, FGC3 and FGClite hardware
 - Continues to interface to the BIS through PIC, WIC and FMCM systems
- All power converters will use FGC2, FGC3, FGClite or PLC platforms by LS3
 - Deprecate MIL1553 G64 GEREG platform
 - Deprecate MUGEF platform
- PS and SPS complex will extensively use the FGC3 platform
 - Interfaces through the WIC for magnet protection and slower BIS functionality
 - Dedicated interface to the BIS for specific functions
 - We would like to standardise the power converter BIS interface
- ← Purpose of this presentation See also EDMS 1744675

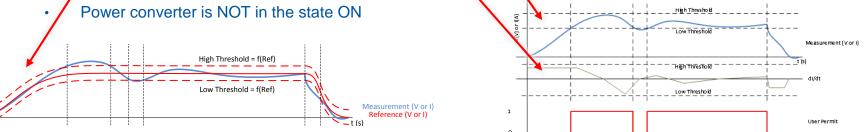
PC to BIS Requirements

- Functionality
 - When current (or sometimes voltage) is in a defined window, generate a beam permit signal to send to the BIS via a CIBU
 - In some instances a window around a complex function is required
 - The permit shall be continuously evaluated every 100us
 - Total reaction time between deviation and BIS reception = ~250us
- Outputs
 - Compatible with BIS CIBU
 - Shall allow up to 4 separate windows to be evaluated for a single power converter (applications requiring up to 3 outputs exist)

PC to BIS Requirements

• Settings management

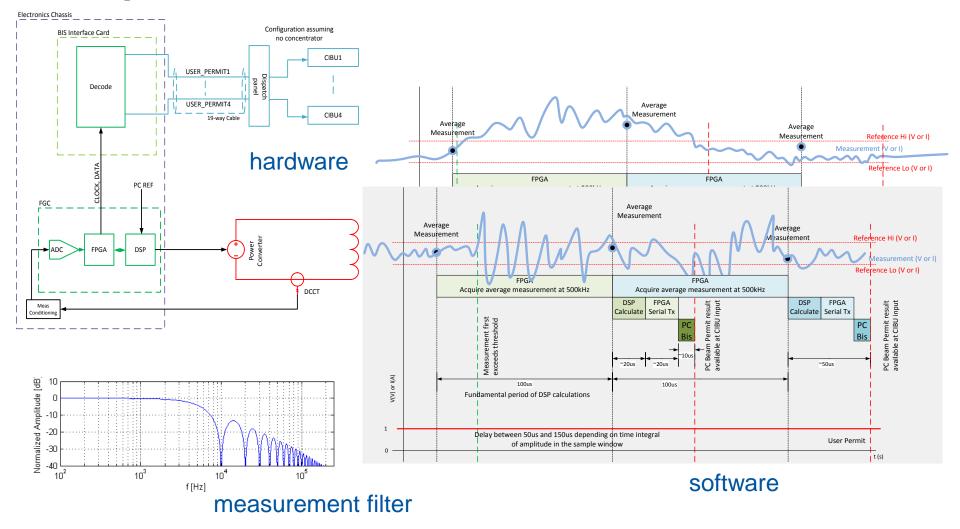
- Interlock thresholds to be set and monitored periodically
 - In the LHC and SPS, concept of Machine Critical Settings (RBAC protected)
 - SPS requires different settings for each user


Signal Concentration

- It shall be possible to connect several power converters to a single CIBU
 - In particular the SPS uses the MUGEF architecture to concentrate up to 64 converters
- Not for detailed discussion today
- Masking
 - In the event of a converter failing, or not participating for a given user permit, it should be possible to mask the permit
 - Software masking remotely by the operations team should be implemented on the converter (requires that converter controls are powered)

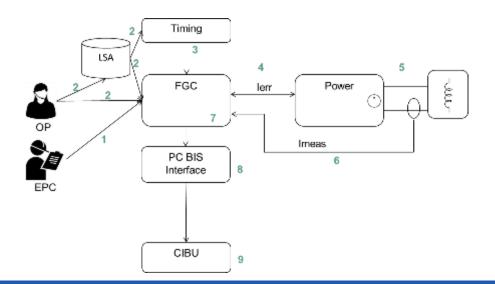
Implementation

- Beam Permit calculation to be made by the FGC
 - Software based process (see next slide)
- Software approach allows more functionalities
 - Support for settings by USER and DESTINATION
 - USER 0 is always active (non ppm)
 - The result can be mapped onto any of the 4 hardware outputs
 - The result can be composed of an AND of several conditions
 - Fixed window evaluating the absolute value of current
 - Fixed window evaluating the absolute value of voltage
 - Fixed window evaluating the absolute value of dv/dt
 - Fixed window evaluating the absolute value of di/dt
 - Fixed window evaluating the difference between the reference function and the measured value

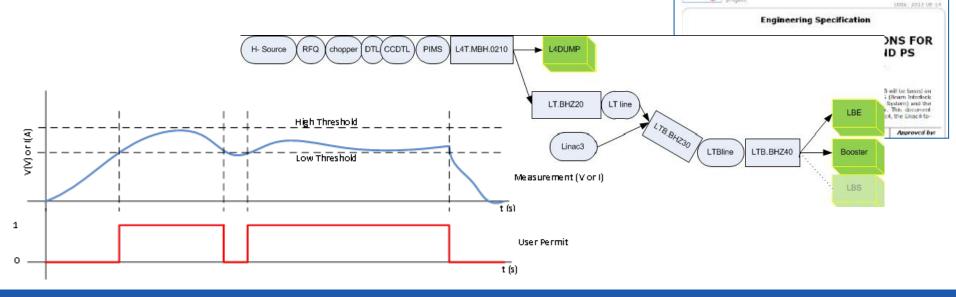


V(V) or I(A)

t (s)


Implementation

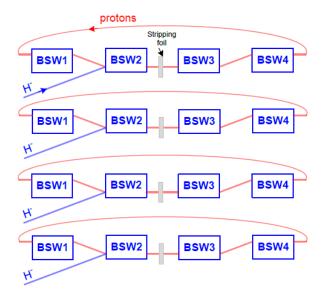
Integrity


- A lot of systems required to deliver permit
 - Should only consider system valid following a check with safe beam
 - Regular checking and validation is necessary for a reliable system
- In the SPS the MCS application assists with the management of the settings
 - Could this be complemented by the SIS, particularly in the PS complex?

Case study: L4 Bending Converters

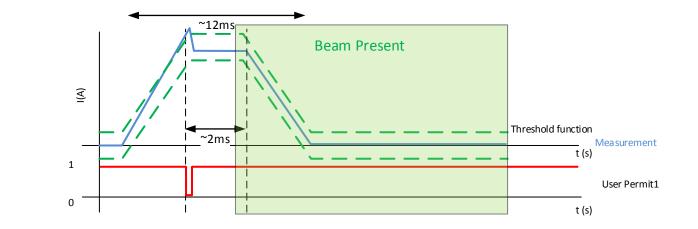
- Requirement outlined in EDMS 1016233
- Proposed FGC implementation meets requirements
 - Up to 2 windows required (eg AQN LT and AQN L4Z)
 - Software thresholds will require periodic monitoring
- Do not need to manage multiple USERs
 - Could use the 'USER 0' settings, which will be non-ppm

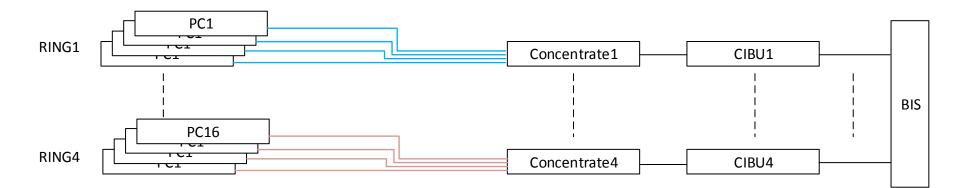
L4-CIB-ES-0001 rev. 1.0


BE/OP

CERN CH-1211 Geneve 23

Linac4

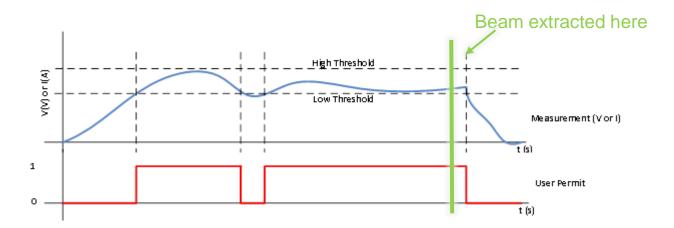

Case study: L4-PSB BSW Converters


- Also mentioned in EDMS 1016233 (definitive requirements tbc)
- Demanding application merge fast signals from 16 converters
- Proposed FGC implementation will meet requirements
 - Threshold on reference function
 - Software thresholds will require periodic monitoring
- Do not need to manage multiple USERs
 - Could use the 'USER 0' settings, which will be non-ppm

Case study: L4-PSB BSW Converters

4/27/2017

Case study: SPS FEI


- FEI requirements
 - FEI Functional specification: LHC-CI-ES-0002-10-00 (particularly chapter 7.3)
 - FEI List of interlocked channels: LHC-CIB-ES-0003-10-00
 - MCS Functional specification: LHC-CI-ES-0003-10-00
- Features of the existing implementation
 - Software implementation
 - Different interlocks required depending on cycle type
 - Can generate Dump events or Permit events
 - ts Will become continuous
 - Result is calculated at several distinct points of the supercycle
 - Each building has an interface to the BIS, generated from the mugef server
 - The mugef server allows up to 64 converters to participate to the interlock
 - 193 power converters interface to the BIS
 - 93 are NCODS installed in 4 buildings

Replace with FGC3 converters during LS2

Case study: SPS FEI

- FEI signal would be implemented with a flat-top threshold value
 - Continually evaluated (not triggered by timing event)
 - Thresholds would be managed from MCS (as today)
 - A different set of thresholds for each user, although users are typically grouped by activity (eg LHC, North, Awake, etc)
 - Would need to communicate with the FGC3 (eg Class_61)

Conclusion

- A new Power Converter Beam Permit functionality has been proposed
 - Power Converter Beam Permit will be calculated using the FGC software
 - A common implementation across the accelerator complex
- To assure adequate integrity
 - Operations have responsibility for the power converter Beam Permit settings
 - Regular checking of the power converter settings using an appropriate tool is recommended
 - Extend Machine Critical Settings (MCS) beyond the SPS and LHC?
 - Investigate using the SIS for monitoring?
 - Validation of the permit functionality using a safe beam intensity should be part of a startup routine
- Some outstanding details to be defined for the concentration of signals
 - Requirement in the SPS, desirable elsewhere
- Development of the new power converter beam permit platform will start soon (significant software effort, modest hardware effort)
 - Deployment during LS2

