Collimation materials and designs: impedance motivation

N. Biancacci, E. Métral, B. Salvant

Measurements and simulations
by D. Amorim, N. Biancacci and G. Mazzacano

Internal workshop on collimation design and materials
May 2nd 2017
Many talks on the subject recently
A lot of information was already presented at the HL-TCC by Nicolo.
Agenda

• Motivation for coating

• Lab measurements and possible improvements

• MD plan

• Long fingers

• Conclusion
Motivation

- The HL-LHC transverse impedance is largely dominated by collimators
Motivation

- The HL-LHC transverse impedance is largely dominated by the collimators
- The large collimator transverse impedance contribution is mainly due to the
 - Small gap of the collimators
 - High resistivity of the jaw material
- Therefore 2 methods to minimize this contribution
 - Increase the collimator gap (not really the baseline for collimation team)
 - Reduce the resistivity of the jaws: CFC \rightarrow MoGr coated with 5 μm Mo
- Current HL-LHC baseline: replace the TCSGs in IR7 by low impedance collimators.
Motivation

• The HL-LHC transverse impedance is largely dominated by the collimators
• The large collimator transverse impedance contribution is mainly due to the
 • Small gap of the collimators
 • High resistivity of the jaw material
• Therefore 2 methods to minimize this contribution
 • Increase the collimator gap (not really the baseline for collimation team)
 • Reduce the resistivity of the jaws: CFC → MoGr coated with 5 µm Mo
• Current HL-LHC baseline: replace the TCSGs in IR7 by low impedance collimators.

What can we gain:

• larger operational stability margin :
 • For standard 2-sigma retracted settings and possibility to operate with tighter settings.
 • In particular to help with destabilizing effect when cutting transverse tails.
Motivation

- The HL-LHC transverse impedance is largely dominated by the collimators contribution.
- The collimator transverse impedance is mainly due to the small gap of the collimators and the high resistivity of the jaw material.
- Impedance reduction technique: replacing the present CFC jaw collimators with "low impedance collimators" whose jaw material is MoGr bulk coated by 5um of Mo.
- HL-LHC baseline: replace the TCSGs in IR7 by low impedance collimators as they exhibit the largest impedance contribution among the present collimators.
- The impedance reduction would lead to a gain in octupole stability threshold, which allows larger safety margins in standard 2-sigma retracted settings and possibility to operate with tighter settings.
Motivation

- The HL-LHC transverse impedance is largely dominated by the collimators contribution.
- The collimator transverse impedance is mainly due to the small gap of the collimators and high resistivity of the jaw material.
- Impedance reduction technique: replacing the present CFC jaw collimators with "low impedance collimators" whose jaw material is MoGr bulk coated by 5um of Mo.
- HL-LHC baseline: replace the TCSGs in IR7 by low impedance collimators as they exhibit the largest impedance contribution among the present collimators.
- The impedance reduction would lead to a gain in octupole stability threshold, which allows:
 - larger safety margins in standard 2-sigma retracted settings and possibility to operate with tighter settings.
 - "Immunity" from tail-related effects.

Predicted impact of cutting the transverse tails:
- Larger operational stability margin to help with destabilizing effect when cutting transverse tails.

Courtesy of N. Biancacci
Impact of collimator impedance in HL-LHC

- HL-LHC is more critical due to higher intensity
- With present CFC collimators, need according to simulations \(\sim 350 \text{A} \) octupole current
 - Perfect case – need margin for model errors (up to 50%)
 - Need to keep margin to counteract additional instability mechanisms (e.g. electron cloud)
- With tighter CFC collimators, would need 500 A
 - Not baseline, but could be considered for improved \(\beta^* \)-reach
- Solution: low-impedance secondary collimators
 - Gain close to 200 A in octupole current (TCP still in CFC in simulations)
 - Collimators will anyway have to be replaced due to aging and radiation damage

Simulations by N. Biancacci
HL-LHC v1.2, \(\beta^* = 48 \text{ cm}, Q' = 10, \text{LOF} < 0 \)

→ Large gain of stability margin for HL-LHC with the Mo coating
Agenda

• Motivation for coating

• Lab measurements and “possible improvements”
 • What measurements were performed?
 • Other measurements that could be done following the surprising results?

• MD plan

• Long fingers
Bench measurements on:
Single block of collimator jaw

- A single CFC block was produced with Cu and Mo stripes.
- The RF loop method was applied in order to deduce change in transverse impedance.

Measurements performed by G. Mazzacano and N. Biancacci
Bench measurements on: Single block of collimator jaw

- Overview of block material measurements between 2015/2016.

<table>
<thead>
<tr>
<th>Date</th>
<th>Bulk</th>
<th>Coating</th>
<th>Treatment</th>
<th>Coating resistivity</th>
<th>Expected resistivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 June 16</td>
<td>MoGr</td>
<td>Mo</td>
<td>-</td>
<td>(30 to 150) nΩm</td>
<td>53.5 nΩm</td>
</tr>
<tr>
<td>01 June 16</td>
<td>MoGr</td>
<td>-</td>
<td>-</td>
<td>(1.5 ± 0.2) µΩm</td>
<td>1 µΩm</td>
</tr>
<tr>
<td>18 May 16</td>
<td>CFC</td>
<td>Cu stripe</td>
<td>-</td>
<td>(43 ±10) nΩm</td>
<td>30 nΩm</td>
</tr>
<tr>
<td>18 May 16</td>
<td>CFC</td>
<td>-</td>
<td>-</td>
<td>(6.9 ± 0.5) µΩm</td>
<td>5 µΩm</td>
</tr>
<tr>
<td>18 May 16</td>
<td>CFC</td>
<td>Mo stripe</td>
<td>-</td>
<td>(140 ± 40) nΩm</td>
<td>53.5 nΩm</td>
</tr>
<tr>
<td>18 May 16</td>
<td>C</td>
<td>-</td>
<td>heat treatment</td>
<td>(23 ± 3) µΩm</td>
<td>15 µΩm</td>
</tr>
<tr>
<td>18 May 16</td>
<td>C</td>
<td>Mo</td>
<td>heat treatment</td>
<td>(125 ± 12) nΩm</td>
<td>53.5 nΩm</td>
</tr>
<tr>
<td>18 May 16</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>(27.5 ± 0.3) µΩm</td>
<td>15 µΩm</td>
</tr>
<tr>
<td>18 May 16</td>
<td>C</td>
<td>TiN</td>
<td>-</td>
<td>(147 ± 49) nΩm</td>
<td>400 nΩm</td>
</tr>
<tr>
<td>18 May 16</td>
<td>CFC</td>
<td>-</td>
<td>-</td>
<td>(7.6 ± 0.8) µΩm</td>
<td>5 µΩm</td>
</tr>
<tr>
<td>18 May 16</td>
<td>CFC</td>
<td>TiN</td>
<td>-</td>
<td>(182 ± 26) nΩm</td>
<td>400 nΩm</td>
</tr>
<tr>
<td>09 Feb 16</td>
<td>CFC</td>
<td>Mo</td>
<td>after heat treatment</td>
<td>(75 ± 6) nΩm</td>
<td>53.5 nΩm</td>
</tr>
<tr>
<td>15 Dec 15</td>
<td>C</td>
<td>Mo</td>
<td>-</td>
<td>(54 ± 5) nΩm</td>
<td>53.5 nΩm</td>
</tr>
<tr>
<td>08 Dec 15</td>
<td>CFC</td>
<td>-</td>
<td>-</td>
<td>(6.8 ± 0.8) µΩm</td>
<td>5 µΩm</td>
</tr>
<tr>
<td>08 Dec 15</td>
<td>CFC</td>
<td>Mo</td>
<td>-</td>
<td>(68.0 ± 8.4) nΩm</td>
<td>53.5 nΩm</td>
</tr>
<tr>
<td>12 Nov 15</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>(16.7 ± 3.5) µΩm</td>
<td>15 µΩm</td>
</tr>
</tbody>
</table>

- Generally in agreement with expectations.
- Mo coating always between 30 to 150 nOhm.m
- MoGr, CFC or C are always above or well above 1 µOhm.m (MoGr at ~1 and CFC at 5)
Lab measurements performed

• Transverse RF measurements on small blocks
 • Were performed and consistent with expectations

• RF measurements on collimator assembly
 • Were performed in a rush due to several issues (vacuum, blocked fingers)
 • Only for “quality control” to check for modes
 • Only longitudinal impedance (not transverse)
Bench measurements on full collimator assembly
Bench measurements on full collimator assembly: resonant modes

- Measured by the impedance team to validate the TCSPM for installation from the global LHC impedance point of view (only 2 days reserved due to previous delays, completed in 1 day). With more time, more accurate measurements of the transverse impedance could have been completed.
- Measured few resonant modes -> small shunt impedance, not expected to be harmful for stability.
Bench measurements on full collimator assembly:

- Bonus measurement: effect of the stripes from longitudinal impedance Vs X position
- Good relative agreement for TiN/Mo (Delta of ~0.1 Ohm)
- Unexpected lower impedance for MoGr stripe.
- Drop on Glid Copper (GC)
- Considerably larger longitudinal impedance than predicted.

This bonus measurement obtained in a rush is not consistent with expectations.
Simulating the longitudinal impedance

Checks made with CST simulations with Ti-MoGr-Mo as bulk:
- Negligible effect of the transition tapers.
- Negligible effect of change in Z_c when moving the wire.
- Little effect w.r.t. wire (beam) offset.
- Reasonable agreement with IW2D.

Maybe bad contact resistances could explain part of the discrepancy with measurements.

$\Delta \sim 0.15 \, \Omega$
$\Delta \sim 0.2 \, \Omega$
$\Delta \sim 0.4 \, \Omega$

\rightarrow Longitudinal simulations are consistent with expectations from conductivity difference.
Simulating the longitudinal impedance

Checks made with CST simulations with Ti-MoGr-Mo as bulk:

- Negligible effect of the transition tapers.
- Negligible effect of change in Z_c when moving the wire.
- Little effect w.r.t. wire (beam) offset.
- Reasonable agreement with IW2D.

Maybe bad contact resistances could explain part of the discrepancy with measurements.

$\Delta \sim 0.1 \Omega$

$\Delta \sim 0.2 \Omega$

$\Delta \sim 0.4 \Omega$

→ measurements are off compared to expectations by a large amount for all materials
Other measurements that could be performed?

• DC conductivity measurements on similar blocks (requested)

• RF bench measurements on similar blocks (requested)

• RF measurements (transverse this time) on another collimator assembly with similar blocks

• Everything we can learn on the TCSPM that was installed when it is taken out of the machine (electrical, RF and chemical analysis)

→ in case MDs confirm the surprising results on the full assembly and not the single block results.
Possible improvements

Allow:
- More time for collimator assembly measurements
- Some time to check the data and measure again in case of surprise.
Agenda

• Motivation for coating

• Lab measurements and possible improvements

• MD plan

• Long fingers
MD request

Impedance

TCSPM

- New low impedance prototype collimator (TCSPM) installed.
- Has three stripes of different coatings which have different impedances.
- Would like to measure tune shifts of each stripe (need to kick with ADT/MKQA for tune measurements).
- **Can the TCSPM be moved along the 5th axis (to move from one stripe to another) while there is beam in the machine?**
- If not could use orbit bumps.
- To increase sensitivity, highest possible stable intensity could be considered.
- Single bunch at flat top needed, ~8-12 hours (probably).

Right image taken from:

Lee Carver, LHC MD day, 31 March 2017
Measurements plans for 2017

• Collimator impedance can be inferred by tune shift measurements. Example: $\beta_y = 70m$, flat top, 1.15e11ppb bunch intensity.

• We could measure the three materials moving at 4sigma (~0.75mm half gap) to be enough above measurement resolution.

• Higher intensity can enhance the effect (reached 1.9e11 in 1.5um).

• Moving at injection does not help: tune shift reduces as $\sqrt{\text{energy ratio}}$, i.e. ~1/4

• More refined estimations going on, also on stability if tail cut occur (S.Antipov)

• Alternative measurement techniques being explored: growth rate vs gap, stable phase shift

Settings at 6.5TeV (as for D4R7). $\beta_y = 69m$
7.5 sigma* <-> ~1.4mm
*1sigma w.r.t en=3.5um

$\beta_y = 69m$
7.5 sigma* <- > ~1.4mm
*1sigma w.r.t en=3.5um

TiN coating
Mo coating
MoGr bulk

Reached on D4L7
To be reached for TCSPM
~7.5 sigma
B.Salvant

~4 sigma
MD plan: checklist

• Was the commissioning of movement successful?

• Need to make sure that we are on the right stripe (both position and angle) → collimation team

• With tune shift measurements with gap:
 • Priority #1: check the hierarchy of materials
 • Priority #2: quantify the effective impedance
 • Priority #3: quantify the error

• If higher (full) intensity is allowed, check also all parameters, in particular temperatures and vacuum to spot potential issues with geometrical design.
Agenda

• Motivation for coating

• Lab measurements and possible improvements

• MD plan

• Long fingers
Strategy for mode mitigation from RF fingers task force

• Ferrite vs fingers:
 → several issues with ferrites in LHC
 → it is safer to avoid the mode at the source than to damp it
 → shielding with fingers is preferred when possible

• Recommendation for long fingers:
 • use funnelling
 • Here funnelling stops at very large collimator gaps
 • Risk? In conjunction with beam induced heating if bad contact?
 → EN-MME has the expertise
Strategy for mode mitigation from RF fingers task force

• Ferrite vs fingers:
 → several issues with ferrites in LHC
 → it is safer to avoid the mode at the source than to damp it
 → shielding with fingers is preferred when possible

• Recommendation for long fingers:
 • use funnelling
 • Here funnelling stops at very large collimator gaps
 • Risk? In conjunction with beam induced heating if bad contact?
 → EN-MME has the expertise
Agenda

• Motivation for coating

• Lab measurements and possible improvements

• MD plan

• Long fingers

• Summary
Summary and next steps

• Low impedance collimators with coating brings significant stability margin for HL-LHC

• The only bench measurements on full assembly are contradicting simulations and bench measurements on individual blocks.
 → important to follow up with further checks on similar blocks
 → important to get crosscheck with MD with TCSPM

• Are experts considering that the unfunnelled long fingers facing the beam are safe?
Thank you for your attention!
Bench measurements on:
Single block of collimator jaw

- A single CFC block was produced with Cu and Mo stripes.
- The RF loop method was applied in order to deduce change in transverse impedance.
Bench measurements on:
Single block of collimator jaw

- A single CFC block was produced with Cu and Mo stripes.
- The RF loop method was applied in order to deduce change in transverse impedance.
- The IW2D code was used to deduce a resistivity.

Inferred resistivity for Cu stripe = (43 +/- 10) nOhm.m
Bench measurements on: Single block of collimator jaw

- A single CFC block was produced with Cu and Mo stripes.
- The RF loop method was applied in order to deduce change in transverse impedance.
- The IW2D code was used to deduce a resistivity.

Inferred resistivity for CFC stripe = (6.9 +/- 0.5) uOhm.m
Bench measurements on: Single block of collimator jaw

- A single CFC block was produced with Cu and Mo stripes.
- The RF loop method was applied in order to deduce change in transverse impedance.
- The IW2D code was used to deduce a resistivity.

Inferred resistivity for Mo stripe: $(139+/- 38 \text{ nOhm.m})$

Very different behaviors w.r.t. wire position -> stripes can be distinguished.
Bench measurements on: Single block of collimator jaw

- Overview of block material measurements between 2015/2016.

<table>
<thead>
<tr>
<th>Date</th>
<th>Bulk</th>
<th>Coating</th>
<th>Treatment</th>
<th>Coating resistivity</th>
<th>Expected resistivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 June 2016</td>
<td>MoGr</td>
<td>Mo</td>
<td>-</td>
<td>(30 to 150) nΩm</td>
<td>53.5 nΩm</td>
</tr>
<tr>
<td>01 June 2016</td>
<td>MoGr</td>
<td>-</td>
<td>-</td>
<td>(1.5 ± 0.2) μΩm</td>
<td>1 μΩm</td>
</tr>
<tr>
<td>18 May 2016</td>
<td>CFC</td>
<td>Cu stripe</td>
<td>-</td>
<td>(43 ±10) nΩm</td>
<td>30 nΩm</td>
</tr>
<tr>
<td>18 May 2016</td>
<td>CFC</td>
<td>-</td>
<td>-</td>
<td>(6.9 ± 0.5) μΩm</td>
<td>5 μΩm</td>
</tr>
<tr>
<td>18 May 2016</td>
<td>CFC</td>
<td>Mo stripe</td>
<td>-</td>
<td>(140 ± 40) nΩm</td>
<td>53.5 nΩm</td>
</tr>
<tr>
<td>18 May 2016</td>
<td>C</td>
<td>-</td>
<td>heat treatment</td>
<td>(23 ± 3) μΩm</td>
<td>15 μΩm</td>
</tr>
<tr>
<td>18 May 2016</td>
<td>C</td>
<td>Mo</td>
<td>heat treatment</td>
<td>(125 ± 12) nΩm</td>
<td>53.5 nΩm</td>
</tr>
<tr>
<td>18 May 2016</td>
<td>C</td>
<td>TiN</td>
<td>-</td>
<td>(147 ± 49) nΩm</td>
<td>400 nΩm</td>
</tr>
<tr>
<td>18 May 2016</td>
<td>CFC</td>
<td>-</td>
<td>-</td>
<td>(7.6 ± 0.8) μΩm</td>
<td>5 μΩm</td>
</tr>
<tr>
<td>18 May 2016</td>
<td>CFC</td>
<td>TiN</td>
<td>-</td>
<td>(182 ± 26) nΩm</td>
<td>400 nΩm</td>
</tr>
<tr>
<td>09 Feb 2016</td>
<td>CFC</td>
<td>Mo</td>
<td>after heat treatment</td>
<td>(75 ± 6) nΩm</td>
<td>53.5 nΩm</td>
</tr>
<tr>
<td>15 Dec 2015</td>
<td>C</td>
<td>Mo</td>
<td>-</td>
<td>(54 ± 5) nΩm</td>
<td>53.5 nΩm</td>
</tr>
<tr>
<td>08 Dec 2015</td>
<td>CFC</td>
<td>-</td>
<td>-</td>
<td>(6.8 ± 0.8) μΩm</td>
<td>5 μΩm</td>
</tr>
<tr>
<td>08 Dec 2015</td>
<td>CFC</td>
<td>Mo</td>
<td>-</td>
<td>(68.0 ± 8.4) nΩm</td>
<td>53.5 nΩm</td>
</tr>
<tr>
<td>12 Nov 2015</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>(16.7 ± 3.5) μΩm</td>
<td>15 μΩm</td>
</tr>
</tbody>
</table>

- Generally in agreement with expectations.
- Mo and TiN tends to have different behavior from case to case (impact of the measurement setup? Production process?)
- Would be useful to measure a 3-stripe block as for the TCSPM (MoGr bulk).
Outline

• Proof-of-principle of 3-stripes low impedance collimator

• Bench measurements on:
 • Single block of collimator jaw
 • Full collimator assembly

• Beam measurements results in 2016
• Beam measurements plans for 2017
• Conclusions and outlook
Beam measurements results in 2016

- Measured 3.9×10^{-5}, predicted 3.2×10^{-5} tune shift with $\sim 1 \times 10^{-5}$ accuracy!
- See also D.Valuch et al. ColUSM #75.
Close agreement between theory and simulation!

TCP.C6*7 slightly under-estimated (factor \~1.8)

See also CWG #210
Beam measurements results in 2016

TCP in B2

- Close agreement between theory and simulation!
- TCP.C6*7 slightly under-estimated (factor \(~1.2\))
- See also [CWG #210](#)
Outline

• Proof-of-principle of 3-stripes low impedance collimator

• Bench measurements on:
 • Single block of collimator jaw
 • Full collimator assembly

• Beam measurements results in 2016

• Beam measurements plans for 2017

• Conclusions and outlook
Measurements plans for 2017

• Collimator impedance can be inferred by tune shift measurements. Example: $\beta_Y = 70m$, flat top, 1.15e11ppb bunch intensity.

• We could measure the three materials moving at 4sigma (~0.75mm half gap) to be enough above measurement resolution.

• Higher intensity can enhance the effect (reached 1.9e11 in 1.5um).

• Moving at injection does not help: tune shift reduces as $\sqrt{\text{energy ratio}}$, i.e. ~1/4

• More refined estimations going on, also on stability if tail cut occur (S.Antipov)

• Alternative measurement techniques being explored: growth rate vs gap, stable phase shift

Settings at 6.5TeV (as for D4R7). $\beta_Y = 69m$
7.5 sigma* <-> ~1.4mm
*1sigma w.r.t en=3.5um
The “standard” procedure of single collimator tune shift measurement may be applied.

TCSPM case:
1. Set the beam orbit below a stripe
2. Perform series of gap open/close
3. Measure corresponding tune variation.
4. Move orbit (or collimator axis) and repeat.

Additional remarks:
- ADT excitation can be used.
- Damper, octupole and chromaticity settings are reduced.
- Kick strength is kept low to avoid losses and orbit intensity related drifts.
- At least 8h-12h (2 MD slots) time would be required to set up the measurements with additional complication of the orbit or 5th axis movement.
- To prevent instability due to tail cut we might need to open other collimators to lower the total machine impedance.