Caterina Vernieri, FNAL and LPC Distinguished Researcher 7.27.2017

Higgs to bb and Pixel-Phase-II R&D

Phase−II Pixel upgrade

Ongoing R&D plan to develop a new pixel tracking system to operate at HL-LHC

• To maintain a high tracking and b-jet identification efficiency at luminosities up to 7·1034 cm−2s−1 and operate up to 200 <PU>

-
- It will extend the η coverage from the present $\eta = 2.5$ to $\eta = 4$
- Radiation tolerance up to 3000 fb−1
- Different lines of investigation for Phase-II:
- **Better acceptance per module**/hermeticity ➾ **slim edge sensors**
- Higher instantaneous luminosity ➾ **high granularity** ➾ **small pitch sensor**
- Higher integrated luminosity ➾ **high radiation tolerance** ➾ **thinner sensors**

Lorenzo Uplegger, Ryan Rivera, C.V. (FNAL)

Irene Zoi (Hamburg U) Julia Thom, Nereida Ramirez (Cornell U.)

Prototypes were produced along with the pixel sensors of the CMS Forward Pixel detector and tested at Fermilab

at the Test Beam Facility

The approach saves money and relies on a established process

n-in-p *or* **n-in-n**

-
-

Small pitch sensors

Require bump-bonding patterns compatible to PSI46 ReadOutChip (Phase-I) Maintained the same pixel area 100x150µm² that is implemented in the Phase-I design Single ROC sensors split in 3 regions with 3 different pitches * The hit **resolution is 5.8μm** for **25μmx600μm pixels**

Caterina Vernieri (FNAL)

Collected charge vs Fluence

<http://ph-news.web.cern.ch/content/rd50-radiation-tolerant-silicon-detectors-1>

Results have been published in **[NIM 2016 06, 020](http://www.apple.com)** and included in the Tracker **TDR**

two-separated b-jets $(R = 0.4)$

one single large-cone (fat) jet (R = 0.8)

H(bb̄) tagging

The boosted H(bb̄) signal is identified as large cone size jets:

7

- \cdot R=0.8
- **PUPPI** (PileUp Per Particle Id) is used to mitigate **pile up effects**

Our tools:

CMS-PAS-JME-16-003

- **b-tagging** to reconstruct the two B hadrons from the b and \overline{b} within the same fat jet
- jet **mass** compatibility with the Higgs
- the composite nature of the jet using **substructure**

double-b tagger

double-b tagger

- Tool used in **HIG/B2G/EXO/SUS** *Machine learning approach is being investigated for 2017*

Resonant Di-Higgs at CMS

SM predicts an extremely low rate for hh production (30 fb at 13 TeV)

- 1000 times smaller than the single Higgs boson production
- Significantly enhanced in many BSM scenarios A natural choice is to exploit $X \rightarrow HH \rightarrow b\bar{b}b\bar{b}$ (highest BR)

No significant excess in the range 1-3 TeV

H(bb̄)H(bb̄) best sensitive channel for heavy di-higgs resonances

- Results are being published in **B2G-16-026** (just approved) and **HIG-17-009** (being approved)
- **Phase II studies for the TDR**

FNAL, Florida U, JHU, Rutgers U, Colorado Boulder U, Kansas U

H(bb̄) at LHC

10

Javier Duarte, Nhan Tran, **C.V. (FNAL),** Phil Harris (MIT), Cristina Suarez, Petar Maksimovic (JHU), Michael Krohn (Colorado Boulder U)

-
- -

Search for inclusive H to bb̄

11

- We can access this process in the **boosted dijet** topology
- Use initial state jet to get above the trigger threshold
- Look for boosted **H boson in a single jet mass** distribution
	- Use the **Z boson as Standard Model** candle
		- b-tagging to disentangle W/Z

Caterina Vernieri (FNAL) **12**

CMS-PAS-HIG-17-010

Simultaneous fit of the Z and H signals

- **First Observation of the Z(bb) in the one-jet** *topology* 5.1σ (5.8σ)
- The observed significance for the **H(bb̄)** is **1.5σ** (0.7σ)
- The measured **cross sections** for Z+jets and Higgs for jet $p_T > 450$ GeV are:

 $\sigma_Z = 849 + 155/ - 155$ (stat.) +140/-205 (syst.) $\sigma_H = 74 + 48/48$ (stat.) $+10/17$ (syst.)

Summary

• Being at LPC allows one to effectively take part in an R&D program as well as have face-to-face discussions with local experts in physics object reconstruction, algorithms and other analyzers to improve the quality of

• The most sensitive result on Dihiggs searches and the first search for inclusive Higgs boson decay to bb are

- the physics results
- The LPC effort of the Phase-2 pixels R&D has contributed to the CMS Tracker TDR • taking advantage of the Fermilab test beam facility and expertise
-
- Development of a new tagging approach is relying entirely on local expertise
	- continuing developing to make use of new deepNN techniques
	- local tutorials to build new expertise at LPC
- mostly an LPC effort

Additional Material

ongoing R&D

- **2. 3D pixel sensors**
	- small pitch sensors investigated by CNM (Spain) and FBK/INFN (Italy)
	- thinner wafers (200 µm)

Three different lines of the investigations for the inner parts of the pixel detector:

1. planar pixel sensors in n-in-n

3. thin planar pixel sensors in n-in-p

- Short drift path
- Higher field at same Vbias
- Lower operation voltage
- **single sided** process favored
	- More vendors, **cost effective**
		- 6" n-in-p FZ with 150 μm thickness submission of small pitch pixel sensors
	- pixel sizes of 25μmx100μm and 50μmx50μm under investigations

Common advantages:

After irradiation (to a level implying type inversion) p-in-n does not function well if not fully depleted.

p-in-n vs. n-in-n

17

-signal loss

-resolution degradation due to charge spreading

-faster charge collection (drift for electron is larger) -CCE degradation

n-in-p *or* **n-in-n**

after irradiation and type-inversion

t

signal loss

t

only diffusion

n-in-n vs n-in-p

The Fermilab MTest beam facility

Fermilab Test Beam Facility provides **120 GeV protons** from Main Injector

- At present 2 independent tracking telescopes are installed:
	- The legacy **pixel telescope** built using leftover CMS modules 8 pixel planes

Caterina Vernieri (FNAL) — 7/25/2017 NIM-A 811 (2016) 162-169

readout based on PSI46 analog chip (Phase 0)

(100x150 μm2 pixel cell for 80 rows and 52 columns)

~8 μm resolution on each coordinate

• The new strip based telescope (being commissioned now)

Online data taking

Caterina Vernieri (FNAL) — 7/25/2017

Pixel telescope planes

- 8 modules tilted at 25^o to maximize charge sharing
- Coverage area only 1.6x1.6 cm²
- Resolution on the detector under test of \sim 8 µm

Caterina Vernieri (FNAL) — 7/25/2017

Slim Edge

- Aim at minimizing the dead region at the physical edge of the sensor itself
- The efficiency of the pixels closely located to the edge depends on the geometry of the guard-rings on the opposite side (p-side).
- The pixel array (active area) normally ends at 1.15 mm from the dicing edge.
- In these prototypes such distance has been reduced down to only 210 μ m.
- The reduction is of \sim 950 µm
- * Loss of efficiency on the edge due to error on the track extrapolation
- * Right and left edge behave similarly
- Slight worse efficiency for the Slim edge
	- * effect on the last 15 μ m, but 950 μ m are gained (~6 pixels)

double-b Efficiency measurement in data

- Since there is no signal (yet!), and signal/ background for $Z(b\bar{b})$ is too small to measure now, we use:
	- g(bb) jets to measure the signal efficiency
- Event selection includes high p_T jet ($p_T > 300$ GeV), double-muon tagged jets, and a soft drop mass cut to ensure that $\tilde{g}(b\bar{b})$ is in a phase space that is signal-like
- Measurement performed using 36/fb collected at 13 TeV (2016)
	- single jet triggers with thresholds such that we are 99% efficient for jet $p_T > 300$ GeV

The Higgs boson

LHC Run I legacy

- -

The measurement of the Higgs boson **self coupling** is a **fundamental** test of the SM SM predicts a **extremely small cross section** for HH production (~30 fb at 13 TeV) 1000 times smaller than the single Higgs boson production

Why di-Higgs

But, it is significantly enhanced in many BSM scenarios

Why di-Higgs

• Gluon fusion production of a massive X - **resonant HH** state

• **small natural width**

- Depending on the resonance mass different models can be probed:
	- The mass range around 300-500 GeV is interesting for **(N)MSSM**
	- From 500 GeV it is interesting for **warped extra dimensions** models
		- spin-0 Radion and spin-2 KK-Graviton

Higgs, as a new powerful tool to search for new physics

hh resonant production

highest BR: larger statistics high b-tag efficiency and low fake rate multi-light jets background is highly reduced

Identifying b-quarks plays a critical role

33.3%

simple topology

excellent mass resolution

clean final state for low mass resonances Limited by small BR

$h(b\bar{b})$

h(γγ)

Event Selection

- Highest p_T AK8 jet with Puppi inputs:
	- $p_T > 450$ GeV $|\eta| < 2.5$, tight PF jet ID
	- jet soft-drop mass > 40 GeV $(z = 0.1, \beta = 0)$
	- **Substructure**: two prongs discrimination
	- $N2^{DDT}$ @ 26% background efficiency,
	- **double-b tagger** > 0.9
	- @30% sig. efficiency; 1% bkg efficiency
- **Lepton veto**
- **tt+jets rejection**:
	- Puppi MET < 180 GeV
- \cdot **ρ**= $\log(m_{SD}2/p_T2)$ range −6.0 < **ρ** < −2.1. To avoid instabilities at the edges of the distribution, due to finite cone effects from the AK8 jet clustering (around $\rho \sim$ −2), and to avoid the non-perturbative regime of the soft drop mass calculation (below $\rho \sim -6$).
	- At $p_T = 450$ GeV, $p = -2.1$ corresponds to $m_{SD} \sim 166$ GeV; $p=-6$ corresponds to $m_{SD} \sim 22$ GeV;

Systematics Uncertainties

Perspectives

- Extrapolation from Run II to HL-LHC (3000 fb-1) SM HH production
	- but also analyses improve fast

ggH Higgs p_T reweighting finite m_t + NNLO

- CMS default for ggH is Powheg (*)
- To account for both the effects of higher order corrections and for the finite top mass loop a multi-correction approach is adopted
- Two separate effects: finite top mass corrects *down*, N(N)LO corrects *up*
- Estimate k-factor of \sim 1.6 for Higgs $p_T > 450$ GeV wrt the Powheg sample
- We adopt a 30% uncertainty following the addition in quadrature of the NNLO and NLO* uncertainties.

(*) is generated with Higgs matrix elements up to 1 jet assuming the infinite top mass approximation (mtop $\rightarrow \infty$)

Transfer factor for the QCD prediction

- If the double-b tag discriminator value were completely uncorrelated from the jet p_T and msp, the transfer factor would be equal to unity.
- To account for deviations from unity, we Taylor expand \bm{F} in $\bm{\rho}$ and p_T

We performed the F-test on the blinded, full 2016 dataset to decide the degree of the polynomial form:

• ($n_p = 2$, $n_{p_T} = 1$) polynomial is the default

$$
F(\rho, p_T) = ((1 + a_{01} p_T + a_{02} p_T^2 + \cdots) + (a_{10} + a_{11} p_T + a_{12} p_T^2 + \cdots) \rho + (a_{20} + a_{21} p_T + a_{22} p_T^2 + \cdots) \rho^2 + \cdots
$$