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Beam-beam effects

When the bunches of two beams of a particle collider come into proximity, they interact
electromagnetically and give rise to beam-beam (BB) effects

- Tune shift - Beam stability and
- Tune spread dynamic aperture
- Etc.

- [B3-beating
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Motivation: beam-beam effects in the LHC and HL-LHC

AB/BI%]
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- Impact on performance
+9% B* change for HL-LHC
- Direct repercussion on luminosity — luminosity imbalance between the main
experiments
- Impact on protection system 3/100
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Compensation techniques

- Other compensation techniques:
- Electron beam lens - Current-bearing wires

- Correction of 8-beating by compensation of the BB linear kick
with local magnets
- First step for a correction scheme involving higher multipoles in view of the HL-LHC
- First measurements and preliminary test in the LHC (P. Goncalves et. al., TUPVA030)

- Measured < - 20% larger ,

£8./8, (%]
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‘ 4
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Simulation Measurement



Beam-beam kick

l'o

Radial distance from the
test particle to the center
of the opposite beam,

r= /X2 +y2
Beam size (assumed
round)

Bunch population
Classical particle radius
Relativistic Lorentz factor

Beam separation
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Example: LHC interaction region

6.5 GeV, 1.2x10* ppb
B*=40cm, 6/2 =140 prad, g, =2.5 prad Right

12 T T

X [cm]

50-Ienvelope .
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beam-beam expansion
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- Linearisation of kick for small
amplitudes:
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Head-on (HO) beam-beam

- Linearisation of kick for small
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Head-on (HO) beam-beam

- Linearisation of kick for small

amplitudes:
AX ‘ r—0 _ M X
AY'|r—0 vor |y

- Same effect on both planes

- Beam-beam parameter as a
measure of the induced tune shift;

£op = d(Ar) B* _ NroB*
0= T 4 hryo?

- Horizontal and vertical
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Head-on (HO) beam-beam: LHC

6.5 GeV, 1.2x10™ ppb
Left B*=40cm, 6/2 =140 prad, g, =2.5 prad Right
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Long-range (LR) beam-beam: LHC (16 collisions per IP side)

6.5 GeV, 1.2x10™ ppb

B*=40cm, 6/2 =140 prad, g, =2.5 prad Right

t~— LR-BB —t+— LR-BB —

50-Ienvelope .
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Long-range (LR) beam-beam

- Taylor expansions up to second order around (d, 0) (horizontal crossing):
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Procedure

- Re-matching of optics (By,, cu,y) at . AR = Vertical -
the start / IP / end of each IR LHCB1
(separately)
. 6 :
- Eight degrees of freedom per
beam per IP =
- Eight variables: & left-right pairs = 4
(<ol
of magnets : .
- Re-matching of 21 i
Tunes to (64.31,59.32)

fiaes

Chromaticities to 2

s 1 u 1 S
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- Correction in both beams
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Choice of magnets

- Correction in both beams
- Magnet strengths for counter-rotating beams: K, — (—1)"K, (0: dipole, 1: quad, etc.)

y y
X
sy s
M /\ i /\
Beam 1in a QF Beam 2 sees a QD Beam 1in a SF Beam 2 sees a SF too

— B — F —>v(Beam1) —> v(Beam?2)

- Quadrupole, octupole, etc. components of the BB cannot be directly compensated
for both beams using common magnets.
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Choice of magnets: Matching quadrupoles for HO

6.5 GeV, 1.2x10™ ppb
Left B*=40cm, 6/2 =140 prad, g, =2.5 prad Right

HO-BB
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Choice of magnets: Common sextupoles for LR

6.5 GeV, 1.2x10™ ppb
Left B*=40cm, 6/2 =140 prad, g, =2.5 prad Right

t~— LR-BB —t+— LR-BB —

50-Ienvelope .

-150 -100 -50 0 50 100 150
S [m]
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- Reduction of RMS 3-beating to < 0.15%
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Reduction

RMS 3-beating due to HO-BB and LR-BB

- Reduction of RMS 3-beating to < 0.15%

- Tunes reduced by 0.01, chromaticities increased by 2 units — Re-matched to nominal

Before -  After -
T T T T T T T
< g | HO+LR
é. LR A L IO
o [ s . .-.'..-‘. e’
£ 4_"13'.’.".."-‘ ot
- . . .o .-
@ w8 y .
g -t g
A s - % .
& 0 ey it
8'4 F° "\.'.'::o'..:g. o -,:..':.'
N s"f:‘:'.'.. DE IR TPR L W :. P = W ]
= e Lol e
© gl ]
£ -
1 1 1 1 1 1 1

IP4 IP5 IP6 IP7 IP8 IP1 IP2
Longitudinal position

Vertical B-beating [%)]

Before - After -

T T
[ HO+LR

-8

IP4 IP5 IP6 IP7 IP8 IP1 IP2
Longitudinal position



Reduction

RMS 3-beating due to HO-BB and LR-BB

- Reduction of RMS 3-beating to < 0.15%

- Tunes reduced by 0.01, chromaticities increased by 2 units — Re-matched to nominal
- Correction with an identical process for the opposite beam — Similar results
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strenghts to the multipolar terms of the BB kick expansion.

- Successful application to the current LHC optics (RMS beating < 1%)
- Linear HO corrected with matching quadrupoles
- LR quadrupolar term corrected via sextupole feed-down

- Compensation scheme involving common sextupoles has negligible impact on DA.

- First measurements and test of correction in LHC — anyalsis on-going

- Extension to higher orders, and to the HL-LHC:
- Compensation of beam-beam octupolar component via feed-down from decapoles (not
present in the LHC)
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LR-BB kick expansion

- Horizontal crossing
- Taylor expansions up to second order around (d, 0) (horizontal crossing):

AX = Ko + (K1 + K)AX + (Ko + K5)(Ax)? — K (Ay)?,

Ay = —KiAy — 2K AXAY,
where
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- Taylor expansions up to second order around (0, d) (vertical crossing):
AX = —KyAx — 2K AXAY,
Ay = Ko + (Ki + KDAY — K (AX)? + (Ka + Kb)(Ay)?



LR-BB kick expansion: large separation

- Horizontal crossing
- Taylor expansions up to second order around (d, 0) (horizontal crossing):

AX = Ko + KiAx + Ky (AX)? — Ky(Ay)?,
Ay = —KiAy — 2K, AXAY,

where

2Nro (1—E
Ko:—o< d), Eqg=exp (—%)
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Appendix B: Amplitude-dependent non-linear 3-beating (head-on collision)
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The non-linear beta-beating vanish asymptotically with the particle
amplitude (halo particles effect negligible)

— Similar behavior as detuning with amplitude, can be used to increase Lumi
Relevant for performances !



Appendix B: Amplitude-dependent non-linear 3-beating (head-on collision)
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Oscillation amplitude [+]
The non-linear beta-beating does NOT vanish asymptotically with the

particle amplitude (core particles see mainly HO)
- If B-beating of particles at amplitudes < 6 ¢ approaches tolerances of
collimation system — Cleaning Efficiency could be affected!



Resources



Resources -- i

B

B

[

W. Herr and T. Pieloni, “Beam-beam effects”, in Proc. CAS (Advanced Accelerator Physics), edited by W. Herr,
Trondheim, Norway, Aug. 2013, CERN-2014-009 (CERN, Geneva, 2014) arXiv:1601.05235
[physics.acc-ph], doi:10.5170/CERN-2014-009.431

D. Neuffer and S.G. Pegg, “Beam-beam tune shifts and spreads in the SSC -- Head on, long range, and
PACMAN conditions”, SSC-063, 1986. http://1ss.fnal.gov/archive/other/ssc/ssc-63.pdf

J. Shi, L. Jin, and O. Kheawpum, “Multipole compensation of long-range beam-beam interactions with
minimization of nonlinearities in Poincaré maps of a storage-ring collider”, Phys. Rev. E, vol. 69, issue 3, p.
036502, Mar. 2004. doi:10.1103/PhysRevE.69.036502,
https://link.aps.org/doi/10.1103/PhysRevE.69.036502

T. Pieloni et al., “Dynamic beta and beta-beating effects in the presence of the beam-beam interactions”, in
HB'16, Malmo, Sweden, Jun. 2016, paper MOPR027, pp. 136--139, 2016
doi:10.18429/JACOW-HB2016-MOPRO27, http://jacow.org/hb2016/papers/mopro27.pdf

R. Tomas et al., “Record low 3 beating in the LHC", Phys. Rev. ST Accel. Beams, vol. 15, issue 9, p. 091001, Sep.
2012. https://link.aps.org/doi/10.1103/PhysRevSTAB.15.091001,
d0i:10.1103/PhysRevSTAB.15.091001


doi:10.5170/CERN-2014-009.431
http://lss.fnal.gov/archive/other/ssc/ssc-63.pdf
doi:10.1103/PhysRevE.69.036502
https://link.aps.org/doi/10.1103/PhysRevE.69.036502
doi:10.18429/JACoW-HB2016-MOPR027
http://jacow.org/hb2016/papers/mopr027.pdf
https://link.aps.org/doi/10.1103/PhysRevSTAB.15.091001
doi:10.1103/PhysRevSTAB.15.091001

Resources -- ii

@ P. Gongalves Jorge et. al., “Measurement of beta-beating due to strong head-on beam-beam interactions in
the LHC", presented at the 8th IPAC'17, Copenhagen, Denmark, May 2017, paper TUPVAQ30, to be published.

@ S. Fartoukh, A. Valishev, Y. Papaphilippou, and D. Shatiloy, “Compensation of the long-range beam-beam
interactions as a path towards new configurations for the high luminosity LHC", Phys. Rev. ST Accel. Beams,
vol. 18, issue 12, p. 121001, Dec. 2015. doi:10.1103/PhysRevSTAB.18.121001,
https://link.aps.org/doi/160.1103/PhysRevSTAB.18.121001

@ M. Pivi, “Beam-beam effects in particle colliders”, USPAS, Hampton, VA, USA, 2011.
http://uspas.fnal.gov/materials/110DU/Beam-Beam.pdf

@ LHC Optics Web: LHC Run Il pp physics - Collision (0.4m) optics,
http://lhc-optics.web.cern.ch/lhc-optics/www/opt2016/col1400/index.html

@ MAD - Methodical Accelerator Design, http://mad.web.cern.ch/mad/
@ SixDesk, https://github.com/SixTrack/SixDesk/

@ SixTrack -- 6D Tracking Code, http://sixtrack.web.cern.ch/SixTrack/


doi:10.1103/PhysRevSTAB.18.121001
https://link.aps.org/doi/10.1103/PhysRevSTAB.18.121001
http://uspas.fnal.gov/materials/11ODU/Beam-Beam.pdf
http://lhc-optics.web.cern.ch/lhc-optics/www/opt2016/coll400/index.html
http://mad.web.cern.ch/mad/
https://github.com/SixTrack/SixDesk/
http://sixtrack.web.cern.ch/SixTrack/

