UNIVERSIDAD

Correction of β-beating due to beam-beam for the LHC and its impact on dynamic aperture


```
1 Universidad de Guanajuato, León, Mexico
2}\mathrm{ CERN-BE-ABP, Geneva, Switzerland
3}\mathrm{ EPFL, Laussane, Switzerland
lmedinamacern.ch
8th International Particle Accelerator Conference
1 7 \text { May 2017}
```


Introduction

Beam-beam effects

Beam-beam effects

When the bunches of two beams of a particle collider come into proximity, they interact electromagnetically and give rise to beam-beam (BB) effects

Beam-beam effects

When the bunches of two beams of a particle collider come into proximity, they interact electromagnetically and give rise to beam-beam (BB) effects

- Tune shift

Beam-beam effects

When the bunches of two beams of a particle collider come into proximity, they interact electromagnetically and give rise to beam-beam (BB) effects

- Tune shift
- Tune spread

Beam-beam effects

When the bunches of two beams of a particle collider come into proximity, they interact electromagnetically and give rise to beam-beam (BB) effects

- Tune shift
- Tune spread
- β-beating

Beam-beam effects

When the bunches of two beams of a particle collider come into proximity, they interact electromagnetically and give rise to beam-beam (BB) effects

- Tune shift
- Tune spread
- Beam stability and dynamic aperture
- β-beating

Beam-beam effects

When the bunches of two beams of a particle collider come into proximity, they interact electromagnetically and give rise to beam-beam (BB) effects

- Tune shift
- Tune spread
- β-beating
- Beam stability and dynamic aperture
- Etc.

Motivation: beam-beam effects in the LHC and HL-LHC

Motivation: beam-beam effects in the LHC and HL-LHC

LHC: $\quad \xi_{b b}=0.01$ (total)
$8 \% \beta$-beating

Motivation: beam-beam effects in the LHC and HL-LHC

LHC: $\quad \xi_{b b}=0.01$ (total) $8 \% \beta$-beating

HL-LHC: $\quad \xi_{b b}=0.02-0.03$ (total)
15% to $23 \% \beta$-beating

Motivation: beam-beam effects in the LHC and HL-LHC

LHC: $\quad \xi_{b b}=0.01$ (total)
$8 \% \beta$-beating

HL-LHC: $\quad \xi_{b b}=0.02-0.03$ (total)
15% to $23 \% \beta$-beating

- Impact on performance
- $\pm 9 \% \beta^{*}$ change for HL-LHC
- Direct repercussion on luminosity \rightarrow luminosity imbalance between the main experiments
- Impact on protection system

Compensation techniques

Compensation techniques

- Other compensation techniques:

Compensation techniques

- Other compensation techniques:
- Electron beam lens

Compensation techniques

- Other compensation techniques:
- Electron beam lens
- Current-bearing wires

Compensation techniques

- Other compensation techniques:
- Electron beam lens . Current-bearing wires
- Correction of β-beating by compensation of the BB linear kick with local magnets

Compensation techniques

- Other compensation techniques:
- Electron beam lens • Current-bearing wires
- Correction of β-beating by compensation of the BB linear kick with local magnets
- First step for a correction scheme involving higher multipoles in view of the HL-LHC

Compensation techniques

- Other compensation techniques:
- Electron beam lens • Current-bearing wires
- Correction of β-beating by compensation of the BB linear kick with local magnets
- First step for a correction scheme involving higher multipoles in view of the HL-LHC
- First measurements and preliminary test in the LHC (P. Gonçalves et. al., TUPVA030)

Simulation

Measurement

Beam-beam kick

$$
\left\{\begin{array}{l}
\Delta x^{\prime} \\
\Delta y^{\prime}
\end{array}\right\}=-\frac{2 N r_{0}}{\gamma} \frac{1}{r^{2}}\left\{\begin{array}{l}
x \\
y
\end{array}\right\}\left[1-\exp \left(-\frac{r^{2}}{2 \sigma^{2}}\right)\right]
$$

r Radial distance from the test particle to the center of the opposite beam, $r=\sqrt{x^{2}+y^{2}}$
σ Beam size (assumed round)
N Bunch population
r_{0} Classical particle radius
γ Relativistic Lorentz factor
d Beam separation

Example: LHC interaction region

Head-on and long-range
beam-beam expansion

Head-on (HO) beam-beam

Head-on (HO) beam-beam

- Linearisation of kick for small amplitudes:

$$
\left\{\begin{array}{l}
\left.\Delta x^{\prime}\right|_{r \rightarrow 0} \\
\left.\Delta y^{\prime}\right|_{r \rightarrow 0}
\end{array}\right\}=-\frac{N r_{0}}{\gamma \sigma^{2}}\left\{\begin{array}{l}
x \\
y
\end{array}\right\}
$$

Head-on (HO) beam-beam

- Linearisation of kick for small amplitudes:

$$
\left\{\begin{array}{l}
\left.\Delta x^{\prime}\right|_{r \rightarrow 0} \\
\left.\Delta y^{\prime}\right|_{r \rightarrow 0}
\end{array}\right\}=-\frac{N r_{0}}{\gamma \sigma^{2}}\left\{\begin{array}{l}
x \\
y
\end{array}\right\}
$$

- Same effect on both planes

Head-on (HO) beam-beam

- Linearisation of kick for small amplitudes:

$$
\left\{\begin{array}{l}
\left.\Delta x^{\prime}\right|_{r \rightarrow 0} \\
\left.\Delta y^{\prime}\right|_{r \rightarrow 0}
\end{array}\right\}=-\frac{N r_{0}}{\gamma \sigma^{2}}\left\{\begin{array}{l}
x \\
y
\end{array}\right\}
$$

- Same effect on both planes
- Beam-beam parameter as a measure of the induced tune shift:

$$
\xi_{b b} \equiv \frac{\mathrm{~d}\left(\Delta r^{\prime}\right)}{\mathrm{dr} r} \frac{\beta^{*}}{4 \pi}=\frac{N r_{0} \beta^{*}}{4 \pi \gamma \sigma^{2}}
$$

Head-on (HO) beam-beam

- Linearisation of kick for small amplitudes:

$$
\left\{\begin{array}{l}
\left.\Delta x^{\prime}\right|_{r \rightarrow 0} \\
\left.\Delta y^{\prime}\right|_{r \rightarrow 0}
\end{array}\right\}=-\frac{N r_{0}}{\gamma \sigma^{2}}\left\{\begin{array}{l}
x \\
y
\end{array}\right\}
$$

- Same effect on both planes
- Beam-beam parameter as a measure of the induced tune shift:

$$
\xi_{b b} \equiv \frac{\mathrm{~d}\left(\Delta r^{\prime}\right)}{\mathrm{dr} r} \frac{\beta^{*}}{4 \pi}=\frac{N r_{0} \beta^{*}}{4 \pi \gamma \sigma^{2}}
$$

- Horizontal and vertical

Head-on (HO) beam-beam: LHC

Long-range (LR) beam-beam: LHC (16 collisions per IP side)

Long-range (LR) beam-beam

- Taylor expansions up to second order around ($d, 0$) (horizontal crossing):

Long-range (LR) beam-beam

- Taylor expansions up to second order around ($d, 0$) (horizontal crossing):

$$
\begin{array}{lrl}
\Delta x^{\prime} & =K_{0}+\left(K_{1}+K_{1}^{\prime}\right) \Delta x+\left(K_{2}+K_{2}^{\prime}\right)(\Delta x)^{2}-K_{2}(\Delta y)^{2}, \\
\Delta y^{\prime} & =-K_{1} \Delta y & -2 K_{2} \Delta x \Delta y,
\end{array}
$$

Long-range (LR) beam-beam

- Taylor expansions up to second order around ($d, 0$) (horizontal crossing):

$$
\begin{array}{lrl}
\Delta x^{\prime} & =K_{0}+\left(K_{1}+K_{1}^{\prime}\right) \Delta x+\left(K_{2}+K_{2}^{\prime}\right)(\Delta x)^{2}-K_{2}(\Delta y)^{2}, \\
\Delta y^{\prime} & =-K_{1} \Delta y & -2 K_{2} \Delta x \Delta y,
\end{array}
$$

where K_{i} and K_{i}^{\prime} are functions of

$$
\begin{equation*}
E_{d} \equiv \exp \left(-\frac{d^{2}}{2 \sigma^{2}}\right) \tag{1}
\end{equation*}
$$

(See Appendix A)

Long-range (LR) beam-beam

- Taylor expansions up to second order around ($d, 0$) (horizontal crossing):

$$
\begin{array}{lrl}
\Delta x^{\prime} & =K_{0}+\left(K_{1}+K_{1}^{\prime}\right) \Delta x+\left(K_{2}+K_{2}^{\prime}\right)(\Delta x)^{2}-K_{2}(\Delta y)^{2}, \\
\Delta y^{\prime} & =-K_{1} \Delta y & -2 K_{2} \Delta x \Delta y,
\end{array}
$$

where K_{i} and K_{i}^{\prime} are functions of

$$
\begin{equation*}
E_{d} \equiv \exp \left(-\frac{d^{2}}{2 \sigma^{2}}\right) \tag{1}
\end{equation*}
$$

(See Appendix A)

Long-range (LR) beam-beam

- Taylor expansions up to second order around ($d, 0$) (horizontal crossing):

$$
\begin{array}{lrl}
\Delta x^{\prime} & =K_{0}+\left(K_{1}+K_{1}^{\prime}\right) \Delta x+\left(K_{2}+K_{2}^{\prime}\right)(\Delta x)^{2}-K_{2}(\Delta y)^{2}, \\
\Delta y^{\prime} & =-K_{1} \Delta y & -2 K_{2} \Delta x \Delta y,
\end{array}
$$

where K_{i} and K_{i}^{\prime} are functions of

$$
\begin{equation*}
E_{d} \equiv \exp \left(-\frac{d^{2}}{2 \sigma^{2}}\right) \tag{1}
\end{equation*}
$$

(See Appendix A)

Procedure and results

Procedure

- Re-matching of optics $\left(\boldsymbol{\beta}_{x, y}, \boldsymbol{\alpha}_{x, y}\right)$ at the start / IP / end of each IR (separately)

Procedure

- Re-matching of optics $\left(\boldsymbol{\beta}_{x, y}, \boldsymbol{\alpha}_{x, y}\right)$ at the start / IP / end of each IR (separately)
- Eight degrees of freedom per beam per IP

Procedure

- Re-matching of optics $\left(\boldsymbol{\beta}_{x, y}, \boldsymbol{\alpha}_{x, y}\right)$ at the start / IP / end of each IR (separately)
- Eight degrees of freedom per beam per IP
- Eight variables: 4 left-right pairs of magnets

Procedure

- Re-matching of optics $\left(\boldsymbol{\beta}_{x, y}, \boldsymbol{\alpha}_{x, y}\right)$ at the start / IP / end of each IR (separately)
- Eight degrees of freedom per beam per IP
- Eight variables: 4 left-right pairs of magnets
- Re-matching of

Tunes to $(64.31,59.32)$
Chromaticities to 2

Choice of magnets

Choice of magnets

- Correction in both beams

Choice of magnets

- Correction in both beams
- Magnet strengths for counter-rotating beams: $K_{n} \rightarrow(-1)^{n} K_{n}$ (0: dipole, 1: quad, etc.)

Choice of magnets

- Correction in both beams
- Magnet strengths for counter-rotating beams: $K_{n} \rightarrow(-1)^{n} K_{n}$ (0: dipole, 1: quad, etc.)

Beam 1 in a QF

$$
\longrightarrow B \quad \longrightarrow \quad \longrightarrow v(\text { Beam } 1) \quad \longrightarrow v(\text { Beam } 2)
$$

Choice of magnets

- Correction in both beams
- Magnet strengths for counter-rotating beams: $K_{n} \rightarrow(-1)^{n} K_{n}$ (0: dipole, 1: quad, etc.)

Beam 1 in a QF

$$
\begin{aligned}
& \text { Beam } 2 \text { sees a QD } \\
& \longrightarrow B \quad F \quad \longrightarrow v(\text { Beam } 1) \longrightarrow v \text { (Beam } 2)
\end{aligned}
$$

Choice of magnets

- Correction in both beams
- Magnet strengths for counter-rotating beams: $K_{n} \rightarrow(-1)^{n} K_{n}$ (0: dipole, 1: quad, etc.)

Beam 1 in a QF

Beam 2 sees a QD

Beam 1 in a SF

$$
\longrightarrow B \quad \longrightarrow F \quad \longrightarrow v(\text { Beam 1) } \quad \longrightarrow v(\text { Beam } 2)
$$

Choice of magnets

- Correction in both beams
- Magnet strengths for counter-rotating beams: $K_{n} \rightarrow(-1)^{n} K_{n}$ (0: dipole, 1: quad, etc.)

Beam 1 in a QF

Beam 2 sees a QD

Beam 1 in a SF

Beam 2 sees a SF too

$$
\longrightarrow B \quad \longrightarrow F \quad \longrightarrow v(\text { Beam 1) } \quad \longrightarrow v(\text { Beam } 2)
$$

Choice of magnets

- Correction in both beams
- Magnet strengths for counter-rotating beams: $K_{n} \rightarrow(-1)^{n} K_{n}$ (0: dipole, 1: quad, etc.)

Beam 1 in a QF

Beam 2 sees a QD

Beam 1 in a SF

Beam 2 sees a SF too

$$
\longrightarrow B \quad \longrightarrow F \quad \longrightarrow v(\text { Beam } 1) \quad \longrightarrow v(\text { Beam } 2)
$$

- Quadrupole, octupole, etc. components of the BB cannot be directly compensated for both beams using common magnets.

Choice of magnets: Matching quadrupoles for HO

Choice of magnets: Common sextupoles for LR

Reduction of RMS β-beating due to HO-BB or LR-BB

Reduction of RMS β-beating due to HO-BB and LR-BB

- Reduction of RMS β-beating to $<0.15 \%$

Reduction of RMS β-beating due to HO-BB and LR-BB

- Reduction of RMS β-beating to $<0.15 \%$
- Tunes reduced by 0.01, chromaticities increased by 2 units \rightarrow Re-matched to nominal

Reduction of RMS β-beating due to HO-BB and LR-BB

- Reduction of RMS β-beating to $<0.15 \%$
- Tunes reduced by 0.01, chromaticities increased by 2 units \rightarrow Re-matched to nominal
- Correction with an identical process for the opposite beam \rightarrow Similar results

Before • After

Longitudinal position

Stability of the HO-BB and LR-BB correction

Stability of the HO-BB and LR-BB correction

- Correcting sextupole strengths
have opposite sign to the
sextupolar term of the BB kick.

Stability of the HO-BB and LR-BB correction

- Correcting sextupole strengths have opposite sign to the sextupolar term of the BB kick.
- Non-linear elements

Stability of the HO-BB and LR-BB correction

- Correcting sextupole strengths have opposite sign to the sextupolar term of the BB kick.
- Non-linear elements
- Long-term stability?

Stability of the HO-BB and LR-BB correction

- Correcting sextupole strengths have opposite sign to the sextupolar term of the BB kick.
- Non-linear elements
- Long-term stability?
- Dynamic aperture (DA), via single-particle tracking.

$$
l_{\text {oct }}=0 \mathrm{~A}
$$

2 units of chromaticity

Stability of the HO-BB and LR-BB correction

- Correcting sextupole strengths have opposite sign to the sextupolar term of the BB kick.
- Non-linear elements
- Long-term stability?
- Dynamic aperture (DA), via single-particle tracking.
- Little impact on DA $>5.5 \sigma$ for all angles

$$
l_{\text {oct }}=0 \mathrm{~A}
$$

2 units of chromaticity

Conclusions and outlook

Conclusions and Outlook

- Beam-beam interactions can limit the machine performance.

Conclusions and Outlook

- Beam-beam interactions can limit the machine performance.
- Luminosity imbalance, machine protection

Conclusions and Outlook

- Beam-beam interactions can limit the machine performance.
- Luminosity imbalance, machine protection
- Induced $\boldsymbol{\beta}$-beating can be corrected, at least partially, by matching local magnet strenghts to the multipolar terms of the BB kick expansion.

Conclusions and Outlook

- Beam-beam interactions can limit the machine performance.
- Luminosity imbalance, machine protection
- Induced $\boldsymbol{\beta}$-beating can be corrected, at least partially, by matching local magnet strenghts to the multipolar terms of the BB kick expansion.
- Successful application to the current LHC optics (RMS beating $<1 \%$)

Conclusions and Outlook

- Beam-beam interactions can limit the machine performance.
- Luminosity imbalance, machine protection
- Induced $\boldsymbol{\beta}$-beating can be corrected, at least partially, by matching local magnet strenghts to the multipolar terms of the BB kick expansion.
- Successful application to the current LHC optics (RMS beating $<1 \%$)
- Linear HO corrected with matching quadrupoles

Conclusions and Outlook

- Beam-beam interactions can limit the machine performance.
- Luminosity imbalance, machine protection
- Induced $\boldsymbol{\beta}$-beating can be corrected, at least partially, by matching local magnet strenghts to the multipolar terms of the BB kick expansion.
- Successful application to the current LHC optics (RMS beating $<1 \%$)
- Linear HO corrected with matching quadrupoles
- LR quadrupolar term corrected via sextupole feed-down

Conclusions and Outlook

- Beam-beam interactions can limit the machine performance.
- Luminosity imbalance, machine protection
- Induced $\boldsymbol{\beta}$-beating can be corrected, at least partially, by matching local magnet strenghts to the multipolar terms of the BB kick expansion.
- Successful application to the current LHC optics (RMS beating $<1 \%$)
- Linear HO corrected with matching quadrupoles
- LR quadrupolar term corrected via sextupole feed-down
- Compensation scheme involving common sextupoles has negligible impact on DA.

Conclusions and Outlook

- Beam-beam interactions can limit the machine performance.
- Luminosity imbalance, machine protection
- Induced $\boldsymbol{\beta}$-beating can be corrected, at least partially, by matching local magnet strenghts to the multipolar terms of the BB kick expansion.
- Successful application to the current LHC optics (RMS beating $<1 \%$)
- Linear HO corrected with matching quadrupoles
- LR quadrupolar term corrected via sextupole feed-down
- Compensation scheme involving common sextupoles has negligible impact on DA.
- First measurements and test of correction in LHC \rightarrow anyalsis on-going

Conclusions and Outlook

- Beam-beam interactions can limit the machine performance.
- Luminosity imbalance, machine protection
- Induced $\boldsymbol{\beta}$-beating can be corrected, at least partially, by matching local magnet strenghts to the multipolar terms of the BB kick expansion.
- Successful application to the current LHC optics (RMS beating $<1 \%$)
- Linear HO corrected with matching quadrupoles
- LR quadrupolar term corrected via sextupole feed-down
- Compensation scheme involving common sextupoles has negligible impact on DA.
- First measurements and test of correction in LHC \rightarrow anyalsis on-going
- Extension to higher orders, and to the HL-LHC:

Conclusions and Outlook

- Beam-beam interactions can limit the machine performance.
- Luminosity imbalance, machine protection
- Induced $\boldsymbol{\beta}$-beating can be corrected, at least partially, by matching local magnet strenghts to the multipolar terms of the BB kick expansion.
- Successful application to the current LHC optics (RMS beating $<1 \%$)
- Linear HO corrected with matching quadrupoles
- LR quadrupolar term corrected via sextupole feed-down
- Compensation scheme involving common sextupoles has negligible impact on DA.
- First measurements and test of correction in LHC \rightarrow anyalsis on-going
- Extension to higher orders, and to the HL-LHC:
- Compensation of beam-beam octupolar component via feed-down from decapoles (not present in the LHC)

Thank you

Appendix A: Long-range beam-beam kick expansion

LR-BB kick expansion

- Horizontal crossing
- Taylor expansions up to second order around ($d, 0$) (horizontal crossing):

$$
\begin{array}{lcc}
\Delta x^{\prime}=K_{0}+\left(K_{1}+K_{1}^{\prime}\right) \Delta x+\left(K_{2}+K_{2}^{\prime}\right)(\Delta x)^{2}-K_{2}(\Delta y)^{2}, \\
\Delta y^{\prime}= & -K_{1} \Delta y & -2 K_{2} \Delta x \Delta y,
\end{array}
$$

where

$$
\begin{array}{ll}
K_{0}=-\frac{2 N r_{0}}{\gamma}\left(\frac{1-E_{d}}{d}\right), & E_{d} \equiv \exp \left(-\frac{d^{2}}{2 \sigma^{2}}\right) \\
K_{1}=+\frac{2 N r_{0}}{\gamma}\left(\frac{1-E_{d}}{d^{2}}\right), & K_{1}^{\prime}=-\frac{2 N r_{0}}{\gamma} \frac{E_{d}}{\sigma^{2}}, \\
K_{2}=-\frac{2 N r_{0}}{\gamma}\left(\frac{1-E_{d}}{d^{3}}-\frac{E_{d}}{2 \sigma^{2} d}\right) \equiv K_{2, a}+K_{2, b}, & K_{2}^{\prime}=+\frac{2 N r_{0}}{\gamma} \frac{E_{d} d}{2 \sigma^{4}}
\end{array}
$$

LR-BB kick expansion

Dipolar (left), quadrupolar (center), and sextupolar (right) terms in the LR kick multipolar expansion.

- Taylor expansions up to second order around ($0, d$) (vertical crossing):

$$
\begin{array}{lc}
\Delta x^{\prime}= & -K_{1} \Delta x \\
\Delta y^{\prime}=K_{0}+\left(K_{1}+K_{1}^{\prime}\right) \Delta y-K_{2}(\Delta x)^{2}+\left(K_{2}+K_{2}^{\prime}\right)(\Delta y)^{2}
\end{array}
$$

LR-BB kick expansion: large separation

- Horizontal crossing
- Taylor expansions up to second order around ($d, 0$) (horizontal crossing):

$$
\begin{aligned}
\Delta x^{\prime} & =K_{0}+K_{1} \Delta x+K_{2}(\Delta x)^{2}-K_{2}(\Delta y)^{2} \\
\Delta y^{\prime} & =-K_{1} \Delta y \quad-2 K_{2} \Delta x \Delta y,
\end{aligned}
$$

where

$$
\begin{aligned}
K_{0} & =-\frac{2 N r_{0}}{\gamma}\left(\frac{1-E_{d}}{d}\right), \quad E_{d} \equiv \exp \left(-\frac{d^{2}}{2 \sigma^{2}}\right) \\
K_{1} & =+\frac{2 N r_{0}}{\gamma}\left(\frac{1-E_{d}}{d^{2}}\right), \\
K_{2} & =-\frac{2 N r_{0}}{\gamma}\left(\frac{1-E_{d}}{d^{3}}\right)=K_{2, a}
\end{aligned}
$$

Appendix B:

Amplitude-dependent non-linear β-beating

Appendix B: Amplitude-dependent non-linear β-beating (head-on collision)

The non-linear beta-beating vanish asymptotically with the particle amplitude (halo particles effect negligible)
\rightarrow Similar behavior as detuning with amplitude, can be used to increase Lumi Relevant for performances !

Appendix B: Amplitude-dependent non-linear β-beating (head-on collision)

The non-linear beta-beating does NOT vanish asymptotically with the particle amplitude (core particles see mainly HO)
\rightarrow If β-beating of particles at amplitudes $<6 \sigma$ approaches tolerances of collimation system \rightarrow Cleaning Efficiency could be affected!

Resources

Resources -- i

W. Herr and T. Pieloni, "Beam-beam effects", in Proc. CAS (Advanced Accelerator Physics), edited by W. Herr, Trondheim, Norway, Aug. 2013, CERN-2014-009 (CERN, Geneva, 2014) arXiv:1601. 05235
[physics.acc-ph], doi:10.5170/CERN-2014-009.431
D. Neuffer and S.G. Pegg, "Beam-beam tune shifts and spreads in the SSC -- Head on, long range, and PACMAN conditions", SSC-063, 1986. http://lss.fnal.gov/archive/other/ssc/ssc-63.pdf
國 J. Shi, L. Jin, and O. Kheawpum, "Multipole compensation of long-range beam-beam interactions with minimization of nonlinearities in Poincaré maps of a storage-ring collider", Phys. Rev. E, vol. 69, issue 3, p. 036502, Mar. 2004. doi:10.1103/PhysRevE.69.036502, https://link.aps.org/doi/10.1103/PhysRevE.69.036502
T. Pieloni et al., "Dynamic beta and beta-beating effects in the presence of the beam-beam interactions", in HB'16, Malmö, Sweden, Jun. 2016, paper MOPR027, pp. 136--139, 2016 doi:10.18429/JACoW-HB2016-MOPR027, http://jacow.org/hb2016/papers/mopr027.pdf

R- R. Tomás et al., "Record low β beating in the LHC", Phys. Rev. ST Accel. Beams, vol. 15, issue 9, p. 091001, Sep. 2012. https://link.aps.org/doi/10.1103/PhysRevSTAB.15.091001, doi:10.1103/PhysRevSTAB.15.091001

Resources -- ii

目
P. Gonçalves Jorge et. al., "Measurement of beta-beating due to strong head-on beam-beam interactions in the LHC", presented at the 8th IPAC'17, Copenhagen, Denmark, May 2017, paper TUPVA030, to be published.
S. Fartoukh, A. Valishev, Y. Papaphilippou, and D. Shatilov, "Compensation of the long-range beam-beam interactions as a path towards new configurations for the high luminosity LHC", Phys. Rev. ST Accel. Beams, vol. 18, issue 12, p. 121001, Dec. 2015. doi:10.1103/PhysRevSTAB.18.121001, https://link.aps.org/doi/10.1103/PhysRevSTAB.18.121001
M. Pivi, "Beam-beam effects in particle colliders", USPAS, Hampton, VA, USA, 2011. http://uspas.fnal.gov/materials/110DU/Beam-Beam.pdf

LHC Optics Web: LHC Run II pp physics - Collision (0.4 m) optics, http://lhc-optics.web.cern.ch/lhc-optics/www/opt2016/coll400/index.html

MAD - Methodical Accelerator Design, http://mad.web.cern.ch/mad/
SixDesk, https://github.com/SixTrack/SixDesk/
SixTrack -- 6D Tracking Code, http://sixtrack.web.cern.ch/SixTrack/

