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Introduction
.



Beam-beam effects
.

When the bunches of two beams of a particle collider come into proximity, they interact
electromagnetically and give rise to beam-beam (BB) effects

• Tune shift

• Tune spread

• β-beating

• Beam stability and
dynamic aperture

• Etc.
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Motivation: beam-beam effects in the LHC and HL-LHC
.
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Motivation: beam-beam effects in the LHC and HL-LHC
.

• Impact on performance
• ±9% β∗ change for HL-LHC
• Direct repercussion on luminosity→ luminosity imbalance between the main
experiments

• Impact on protection system 3 / 100

LHC: ξbb = 0.01 (total) HL-LHC: ξbb = 0.02− 0.03 (total)
8% β-beating 15% to 23% β-beating

2 IPs 2 IPs



Compensation techniques
.

• Other compensation techniques:

• Electron beam lens • Current-bearing wires

• Correction of β-beating by compensation of the BB linear kick
with local magnets

• First step for a correction scheme involving higher multipoles in view of the HL-LHC
• First measurements and preliminary test in the LHC (P. Gonçalves et. al., TUPVA030)
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Beam-beam kick
.

.. x.

y

.....⊙ .⊙. ⊗.
s1

.s. s2

.

≈ d

.
•

.
r

{
∆x′
∆y′

}
= −2Nr0

γ

1
r2

{
x
y

}[
1− exp

(
− r2
2σ2

)]

r Radial distance from the
test particle to the center
of the opposite beam,
r =

√
x2 + y2

σ Beam size (assumed
round)

N Bunch population

r0 Classical particle radius

γ Relativistic Lorentz factor

d Beam separation
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Example: LHC interaction region
.
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Head-on and long-range
beam-beam expansion
.



Head-on (HO) beam-beam
.

• Linearisation of kick for small
amplitudes:{

∆x′|r→0
∆y′|r→0

}
= −Nr0

γσ2

{
x
y

}

• Same effect on both planes

• Beam-beam parameter as a
measure of the induced tune shift:

ξbb ≡
d(∆r′)
dr

β∗

4π =
Nr0β∗

4πγσ2

• Horizontal and vertical
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Head-on (HO) beam-beam: LHC
.
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Long-range (LR) beam-beam: LHC (16 collisions per IP side)
.
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Long-range (LR) beam-beam
.

• Taylor expansions up to second order around (d, 0) (horizontal crossing):

∆x′ = K0 +(K1+K′1)∆x +(K2+K′2)(∆x)2 − K2(∆y)2,
∆y′ = −K1∆y −2K2∆x∆y,

where Ki and K′i are functions of

Ed ≡ exp
(
− d2
2σ2

)
(1)

(See Appendix A)
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Procedure and results
.



Procedure
.

• Re-matching of optics (βx,y, αx,y) at
the start / IP / end of each IR
(separately)

• Eight degrees of freedom per
beam per IP

• Eight variables: 4 left-right pairs
of magnets

• Re-matching of
Tunes to (64.31, 59.32)
Chromaticities to 2
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Choice of magnets
.

• Correction in both beams
• Magnet strengths for counter-rotating beams: Kn → (−1)nKn (0: dipole, 1: quad, etc.)

• Quadrupole, octupole, etc. components of the BB cannot be directly compensated
for both beams using common magnets.
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Choice of magnets: Matching quadrupoles for HO
.
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Choice of magnets: Common sextupoles for LR
.
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Reduction of RMS β-beating due to HO-BB or LR-BB
.
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Reduction of RMS β-beating due to HO-BB or LR-BB
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• Tunes reduced by 0.01, chromaticities increased by 2 units→ Re-matched to nominal
• Correction with an identical process for the opposite beam→ Similar results
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Stability of the HO-BB and LR-BB correction
.

• Correcting sextupole strengths
have opposite sign to the
sextupolar term of the BB kick.

• Non-linear elements

• Long-term stability?

• Dynamic aperture (DA), via
single-particle tracking.

• Little impact on DA > 5.5σ for
all angles
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.

• Beam-beam interactions can limit the machine performance.

• Luminosity imbalance, machine protection

• Induced β-beating can be corrected, at least partially, by matching local magnet
strenghts to the multipolar terms of the BB kick expansion.

• Successful application to the current LHC optics (RMS beating< 1%)

• Linear HO corrected with matching quadrupoles
• LR quadrupolar term corrected via sextupole feed-down

• Compensation scheme involving common sextupoles has negligible impact on DA.

• First measurements and test of correction in LHC→ anyalsis on-going

• Extension to higher orders, and to the HL-LHC:

• Compensation of beam-beam octupolar component via feed-down from decapoles (not
present in the LHC)
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Appendix A: Long-range
beam-beam kick expansion
.



LR-BB kick expansion

• Horizontal crossing
• Taylor expansions up to second order around (d, 0) (horizontal crossing):

∆x′ = K0 + (K1 + K′1)∆x+ (K2 + K′2)(∆x)2 − K2(∆y)2,
∆y′ = −K1∆y − 2K2∆x∆y,

where
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γ

(
1− Ed
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2σ2d
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LR-BB kick expansion
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• Taylor expansions up to second order around (0,d) (vertical crossing):

∆x′ = −K1∆x − 2K2∆x∆y,
∆y′ = K0 + (K1 + K′1)∆y− K2(∆x)2 + (K2 + K′2)(∆y)2



LR-BB kick expansion: large separation

• Horizontal crossing
• Taylor expansions up to second order around (d, 0) (horizontal crossing):

∆x′ = K0 + K1∆x+ K2(∆x)2 − K2(∆y)2,
∆y′ = −K1∆y − 2K2∆x∆y,

where
K0 = −2Nr0

γ

(
1− Ed
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)
, Ed ≡ exp
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)
K1 = +
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β-beating
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Appendix B: Amplitude-dependent non-linear β-beating (head-on collision)Amplitude dependent non-linear -beating
Head-on Beam-beam collision

The non-linear beta-beating vanish asymptotically with the particle 
amplitude (halo particles effect negligible)
→ Similar behavior as detuning with amplitude, can be used to increase Lumi
Relevant for performances ! 

Detuning

-beating

8  detuning with amplitude LHC case

HEAD-ON Beam-Beam Interaction



Appendix B: Amplitude-dependent non-linear β-beating (head-on collision)Amplitude dependent non-linear -beating
Head-on Beam-beam collision

The non-linear beta-beating does NOT vanish asymptotically with the 
particle amplitude (core particles see mainly HO)
→ If -beating of particles at amplitudes < 6  approaches tolerances of 
collimation system → Cleaning Efficiency could  be affected!

Detuning

-beating

8  detuning with amplitude LHC case

HEAD-ON + Long-Range Interactions 
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