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Abstract5

The Trigger Algorithm for the Micromegas detectors is an important component of the Level6

1 New Small Wheel trigger. Updates to the algorithm simulation are described, and baseline7

performance measures of the algorithm under a variety of conditions are detailed. Addition-8

ally, the performance of the algorithm under chamber misalignment for the possible three9

translations and three rotations is shown, and corrections for each case are presented. Nom-10

inal resolutions for the fit quantities are 0.364 mrad for θ, 8.12 mrad for φ, and 1.47 mrad11

for ∆θ. For misalignments resulting from translations, nominal performance can be restored,12

and for misalignments resulting from rotations, the only non-negligible effect is a shift in ∆θ13

bias of 0.12 mrad and a resolution degradation of 2% for 0.3 mrad (roughly corresponding14

to a 1 mm translation misalignment) rotation around the s axis.15

© 2016 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-3.0 license.16



N
ot

re
vi

ew
ed

,f
or

in
te

rn
al

ci
rc

ul
at

io
n

on
ly

DRAFT

1. Introduction17

In order to preserve key physics functionality by maintaining the ability to trigger on low pT muons, the18

Phase I Upgrade to ATLAS includes a New Small Wheel (NSW) that will supply muon track segments to19

the Level 1 trigger. These NSW trigger segments will combine segments from the sTGC and Micromegas20

(MM) trigger processors (TP). This note will focus in particular on the algorithm for the MMTP, described21

in detail with initial studies in [1]. The goal of this note is to describe the MMTP algorithm performance22

under a variety of algorithm settings with both nominal and misaligned chamber positions, as well as23

addressing a number of performance issues.24

This note is organized as follows: the algorithm and its outputs are briefly described in Section 2; Monte25

Carlo samples used are in Section 3; nominal algorithm performance and certain quantities of interest26

are described in Section 4; algorithm performance under misalignment, misalignment corrections, and27

corrected performance are shown in Section 5; and conclusions are presented in Section 6.28

2. Algorithm Overview29

The MMTP algorithm is shown schematically in Figure 1, taken from [1], where a more detailed de-30

scription may be found. The algorithm begins by reading in hits, which are converted to slopes. These31

slopes are calculated under the assumption that the hit originates from the IP; slopes calculated under32

this assumption are denoted by a superscript g for global in order to distinguish them from local slopes33

calculated using only hits in the wedge. In the algorithm simulation, events are screened at truth level34

to make sure they pass certain requirements. The track’s truth-level coordinates must place it with the35

wedge since some generated tracks do not reach the wedge. These hits are stored in a buffer two bunch36

crossings (BCs) in time deep that separates the wedge into so-called “slope-roads.” If any given slope-37

road has sufficient hits to pass what is known as a coincidence threshold, a fit proceeds. A coincidence38

threshold is a requirement for an event expressed as aX+bUV, which means that an slope-road must have39

at least a hits in horizontal (X) planes and at least b hits in stereo (U or V (corresponding to positive and40

negative stereo rotations)) planes. For coincidence thresholds with a 2X hit requirement there is the extra41

requirement that, in the case of only 2X hits, one be on each quadruplet in order to ensure an adequate42

lever arm for the ∆θ calculation. Note that less stringent (lower hit) coincidence thresholds are inclusive;43

i.e. a slope-road passing a 4X+4UV cut automatically passes 2X+1UV. The coincidence threshold, size44

of the slope-roads (denoted h), and the number of slope-roads into which each horizontal and stereo hits45

get written centered upon their nominal value are configurable parameters of the algorithm.46

An individual hit’s slope is calculated as shown in Equation 1, where ybase is the local y coordinate47

(orthogonal to the beamline and direction of the horizontal strips) of a station’s base, wstr is the strip48

pitch, nstr is the hit’s strip number, and zplane is the location of the hit’s plane along the beamline.49

Mhit =
y

z
=

ybase

zplane
+

wstr

zplane
× nstr (1)

In the fit, individual hit slopes in a slope-road are used to calculate global slopes associated with each50

plane type, which are averages (e.g. Mg
X for the average slope of horizontal planes). These in turn are51

used to calculate the three composite slopes: slopes associated with the horizontal (mx) and vertical52

coordinates (my ) and the local slope of hits in the horizontal planes (M l
X ), all of which are shown in53

Equation 2. Note that the expression for M l
X differs but is equivalent to the expression given in [1]. This54
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A: Incoming hits are converted 
to slope values

J: Calculate 
delta theta

K: Calculate 
cartesian 

slopes

I: Filter background 
from stereo hits

E: Calculate 
local slope

F: Calculate 
global X slope

C: Check buffer for 
coincidence

B: Store hits in a buffer where 
address = (slope, plane, BC)!
cycles every BC, 2 BC deep

G: Calculate 
global U slope

H: Calculate 
global V slope

X strips X slopes U and V slopesV slopesU slopes

Apply filter validation

global U slope global V slope stereo validation

stereo global slopes
global X slope

K: Lookup ROI

(m_x,m_y)

D: Read Track from buffer 
and send components

Dtheta cut?

delta theta

local X slope

M: Abandon Fit

Reading specified slope road from FIFO

hit = (strip number, plane, slope)

slope road index to read

Incoming hit signals

L: Trigger Signal Output

local slope <0

fit not on wedge

delta theta too large

could cut if low 
confidence in stereo hits!

(not implemented)

Figure 2: The block diagram is constructed with time flowing downward; therefore tasks on the same
horizontal line are accomplished in parallel. Blocks correspond to operations comprising the algorithm,
solid flow lines represent the flow of data, and light dotted lines represent fit abandonment signals, which
can be triggered at multiple points throughout the algorithm. Blocks after step D are approximately sized
to represent their relative processing times.

3

Figure 1: A flow chart describing the algorithm steps, taken from [1].
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is due to a procedural change in the algorithm detailed in Appendix A. In Equation 2, θst is the stereo55

angle of 1.5 degrees; the sums are over relevant planes; z̄ is the average position in z of the horizontal56

planes; and yi and zi in the local slope expression refer to the y and z coordinates of hits in X planes.57

mx =
1
2

cot θst
(
Mg

U − Mg
V

)
, my = Mg

X , M l
X =

z̄∑
i z2

i − 1/n
(∑

i zi
)2

∑
i

yi

( zi
z̄
− 1

)
(2)

From these composite slopes, the familiar expressions for the fit quantities θ (the zenith), φ (the azimuth1),58

and ∆θ (the difference in θ between the direction of the segment extrapolated back to the interaction point59

and its direction when entering the detector region; the following is an approximation) may be calculated,60

as noted in [1]:61

θ = arctan
( √

m2
x + m2

y

)
, φ = arctan

(
mx

my

)
, ∆θ =

M l
X − Mg

X

1 + M l
X Mg

X

(3)

Looking at Equations 2 and 3, the dependence of fit quantities on input hit information becomes clear.62

∆θ relies exclusively on information from the horizontal (X) planes. Both θ and φ rely on both horizontal63

and stereo slope information. However, the sum in quadrature of mx and my in the arctangent for θ means64

that θ is less sensitive to errors in stereo hit information than φ. Given that θst is small, cot θst is large65

(∼ 38), so mx multiplies small differences in MU and MV , where my is simply an average over slopes.66

This means that while errors in horizontal hit information will affect all three fit quantities, comparable67

errors in stereo hits will have a proportionately larger effect on θ and particularly on φ. The ∆θ cut after68

step J in Figure 1 has been implemented, requiring all fits to have |∆θ | < 16 mrad. This requirement69

ensures good quality fits but also slightly reduces algorithm efficiency.70

3. Monte Carlo Samples71

The Monte Carlo (MC) samples used for these studies were generated in Athena release 20.1.0.2 using72

simulation layout ATLAS-R2-2015-01-01-00 with muon GeoModel override version MuonSpectrometer-73

R.07.00-NSW and modifications to have two modules per multiplet and xxuvuvxx geometry with a stereo74

angle of 1.5 degrees. Muons of a single pT were generated around the nominal IP with a smearing of 5075

mm along the beam line and 0.015 mm orthogonal to it; these muons were pointed toward a single, large76

sector of the NSW. Each event consists of one muon fired towards the single NSW wedge separated by77

effectively infinite time from other events.78

4. Nominal Performance79

In order to evaluate algorithm performance, a number of quantities are evaluated, including the fit quant-80

ities θ, φ, and ∆θ as well as algorithm efficiency. Unless otherwise stated, that algorithm is run with a81

4X+4UV coincidence threshold, slope-road size of 0.0009, an X tolerance of two slope-roads (i.e. hits in82

horizontal planes are written into the two slope-roads closest to the hits’ value), a UV tolerance of four83

1 Defined with respect to the center (y) axis and not the axis of the strips (x) as is sometimes typical, so a hit along the center
of the wedge has φ = 0

24th July 2016 – 21:48 4
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slope-roads2, and a charge threshold requirement on hits of 1 (measured in units of electron charge) for a84

sample of 30 000 events with a muon pT of 100 GeV. Samples were also generated for pT values of 1085

GeV, 20 GeV, 30 GeV, 50 GeV, and 200 GeV, which were used in some of the following studies.86

4.1. Fit Quantities87

In order to evaluate the performance of the algorithm’s fit quantities θ, φ, and ∆θ, fit values are compared88

to truth-level MC values. The residual of the three fit quantities, θ f it−θtru , φ f it−φtru , and ∆θ f it−∆θtru ,89

are recorded for every fitted track. The distributions of these quantities, in particular their biases and90

standard deviations, are then used to evaluate performance. In most cases, following [1], the mean and91

standard deviation of a 3σ Gaussian fit are quoted, as they capture the main features of the algorithm92

and generally behave like the raw mean and rms. Nevertheless, discussion of the raw quantities will be93

included when their behavior deviates markedly from that of the 3σ fit quantities.94

The truth-level quantities used in residual distribution are taken from information in the MC. These come95

directly from the MC for θ, φ, and ∆θ. These quantities, along with the geometry of the (large) wedge,96

are then in turn used to calculate truth-level values for any intermediate quantities used in the algorithm.97

mx, tru , for instance, is given by tan θtru sin φtru .98

Residual distributions for fit quantities under the previously described default settings of the algorithm99

are shown in Figure 2. Both the θ f it − θtru and ∆θ f it − ∆θtru distributions feature a mostly Gaussian100

shape with more pronounced tails. The mean bias for these distributions is negligible at under one tenth101

of a milliradian, and the fitted (raw) rms values are 0.349 (0.614) mrad for θ and 1.03 (2.55) mrad for ∆θ.102

The case of the φ f it − φtru distribution is less straightforward, with both the shape and bias arising from103

the xxuvuvxx geometry and relatively large extent of one of the two η-stations, as explained in Appendix104

B. The fitted (raw) rms for the φ distribution is 8.67 (16.6) mrad.105

 [rad]truθ-fitθ
2− 1.5− 1− 0.5− 0 0.5 1 1.5 2 2.5

3−10×

no
rm

. a
re

a

0

0.02

0.04

0.06

0.08

0.1

0.12

mean=7.66e-05
rms=0.000604
fit mean=8.66e-05
fit rms=0.000364

ηall 

=100 GeV, 3X3UV
T

p
xxuvuvxx

 [rad]
tru

φ-
fit

φ
40− 20− 0 20 40 60

3−10×

no
rm

. a
re

a

0

10

20

30

40

50

3−10×

mean=0.00349
rms=0.015
fit mean=0.00446
fit rms=0.00812

ηall 

=100 GeV, 3X3UV
T

p
xxuvuvxx

 [rad]truθ∆-fitθ∆
10− 5− 0 5 10

3−10×

no
rm

. a
re

a

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

mean=5.12e-05
rms=0.00269
fit mean=5.38e-05
fit rms=0.00147

ηall 

=100 GeV, 3X3UV
T

p
xxuvuvxx

Figure 2: Nominal residual plots; θ, φ, ∆θ for pT = 100 GeVmuons

Both increasing muon pT and increasing muon η for a fixed pT imply increasing muon energy. As muons106

become more energetic, two effects compete in affecting the quality of fit. On the one hand, higher107

energy muons are deflected less by the ATLAS magnetic field, which should tend to improve the quality108

of the fit, since the fitted θ (upon which ∆θ also relies) and φ values are calculated under the infinite109

momentum muon (straight track) assumption. However, as muon energy increases, the likelihood that110

2 The larger tolerance on stereo hits takes into account the particulars of the mx calculation mentioned in Section 2.
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the muon will create additional secondaries increases, which creates extra hits that degrade the quality111

of the fit. While the geometry of the multiplet is such that there is very good resolution in the direction112

orthogonal to the horizontal strip direction, the shallow stereo angle of 1.5 degrees means that early hits113

caused by secondaries can have an outsize impact on mx . ∆θ, which does not rely upon stereo information114

should feel the effect of secondaries the least and benefit from straighter tracks the most and hence benefit115

from higher muon energies; φ, relying upon stereo information the most, would be most susceptible to116

secondaries and benefit the least from straighter tracks and hence least likely to benefit from higher muon117

energy; θ relies upon both horizontal and vertical slope information, though small errors are less likely to118

seriously affect the calculation, so the two effects are most likely to be in conflict for this fit quantity.119

The interplay of these effects on the residual standard deviations can be seen in their dependencies on120

η (Figure 3; note that the final point in each of these plots is the rms of the distribution overall η) and121

pT (Figure 4). For pT = 100 GeVmuons, ∆θ performance increases with η (energy), and φ performance122

decreases, as expected3; for θ, the two effects appear to compete, with performance first increasing with123

η until the effects of secondaries begins to dominate. Integrated over all η, the effects are less clearly124

delineated. Both ∆θ and θ performance increases with increasing pT , suggesting straighter tracks with125

increasing energy are the dominant effect for these quantities, while φ performance appears to improve126

and then deteriorate (the slight improvement at high pT is due to the addition of the ∆θ cut into the127

algorithm, which filters out very poor quality fits).128
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Figure 3: The rms distributions of ∆θ, φ, and θ as a function of η for pT = 100 GeV; the final point in each plot is
the rms obtained from a fit obtained from a fit to the fill distribution including all η bins.

The rms of the three benchmark quantities as a function of algorithm set (i.e. slope-road) coincidence129

threshold are shown in Figure 5 using Gaussian fits and in Figure 6 for the raw quantities. The fitted σ’s130

for θ and φ are fairly stable across coincidence threshold. ∆θ, on the other hand, performs better particu-131

larly for the most stringent coincidence threshold; this is a result of the fact that additional information for132

more hits greatly improves the quality of the local slope fit calculation. The raw rms is a different story.133

Naïvely, one would expect the performance to get better with more stringent coincidence threshold, but134

this is not the case in Figure 6. As the coincidence threshold gets more stringent, fewer and fewer tracks135

are allowed to be fit. When moving from 2X hits to 3X hits, the tracks that get vetoed populate the tails of136

the distribution outside the 3σ fit range but are not in the very extremes of the distribution. While tracks137

with 2X hits are of lower quality than those with 3 and 4 X hits, tracks with the very worst fit values pass138

even the most stringent coincidence threshold requirements (e.g. as a result of many hits arising from139

3 The much worse overall performance for φ is due to the η dependent bias and other effects described in Appendix B.
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Figure 4: The rms distributions of ∆θ, φ, and θ as a function of pT .

a shower of secondaries). This is best illustrated when comparing the 2X+1UV ∆θ residual distribution140

with the 4X+4UV distribution in Figure 7. As both the overlayed normalized curves and ratio distribution141

show, while the most central regions are fairly similar, the 2X+1UV distribution is much more prominent142

in the tails but not the extreme tails, which means that, though the overall 2X+1UV raw rms goes down,143

the overall quality of algorithm fits is worse.144
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Figure 5: The fitted rms of residual distributions for θ, φ, and ∆θ as a function of coincidence threshold for
pT = 100 GeV.
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(a) σθ f i t−θtru v. CT
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Figure 6: The raw rms of residual distributions for θ, φ, and ∆θ as a function of coincidence threshold for pT = 100
GeV.
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Figure 7: Nominal ∆θ residual distribution for pT = 100 GeVmuons with coincidence thresholds 2X+1UV and
4X+4UV normalized to the same area and plotted together (top) as well as the ratio of the 2X+1UV distribution
and the 4X+4UV per bin.
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4.2. Efficiencies145

Two general efficiencies have been formulated to study the performance of the MMTP algorithm. The146

first, denoted εalg , is the fraction of tracks that pass some (slope-road) coincidence threshold configura-147

tion that are successfully fit. An event that passes a slope-road coincidence but does not fit fails because148

some of the hits included are of sufficiently poor quality to throw off the fit. This efficiency answers the149

question of how often the algorithm performs fits when technically possible, giving a measure of overall150

algorithm performance for a given configuration. For example, ε = 95% for 3X+2UV means that 95%151

of tracks that produce at least 3X hits and 2UV hits in at least one slope-road will be successfully fitted152

95% of the time. The performance of this efficiency as a function of coincidence threshold, η (with the153

final point once again being the efficiency integrated over all η), and pT is shown in Figure 8. εalg is154

fairly constant in η and decreases with increased pT , which can be attributed to the increased likelihood155

of secondaries introducing lower quality hits that cause the fit to fail.156
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Figure 8: εalg and as a function of coincidence threshold, η (final point is εalg integrated over all η), and pT .

The second efficiency type, denoted ε f it , is the fraction of tracks that enter the wedge whose fits (if any)157

satisfy a given coincidence threshold. This efficiency can be used to help establish an optimal coincidence158

threshold setting in the algorithm, balancing the improved overall fit quality of higher thresholds with the159

greater number of fits for lower thresholds. Hence, an ε f it of 95% at 3X+2UV means that 95% of tracks160

entering the wedge are fit and that these fits include at least 3X and 2UV hits. ε f it as a function of coin-161

cidence threshold is shown in Figure 9 (a), which shows that the majority of fits having at most 3X+3UV162

hits. That there is a marked drop to 4X+4UV is not surprising, as there is a substantial population outside163

the 4X+4UV bin in Figure 10. The behavior of ε f it with η in Figure 9 (b) (with the final point once again164

being the efficiency integrated over all η) is much more varied, with geometric effects of detector accept-165

ance coming into play. The performance of ε f it as a function of pT , shown in Figure 9 (c), is similar to166

that of εalg coincidence threshold, again consistent with the effects of secondaries at higher energies.167

In order to better understand efficiency behavior with coincidence threshold, the distribution of highest168

slope-road coincidence thresholds in events is shown in Figure 10, with the 0,0 bin containing events that169

did not meet requirements for the minimum 2X+1UV coincidence threshold for a fit to occur. That the170

efficiency is lower at higher coincidence threshold suggests that most of the fits that fail have high hit171

multiplicity (i.e. a similar number fails in each of the coincidence threshold bins in Figure 8 (a)), which172

is consistent with the interpretation that the primary source of fit failures is bad hits originating from173

secondaries created by higher energy muons.174
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Figure 9: ε f it and as a function of coincidence threshold, η (final point is ε f it integrated over all η), and pT .
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Figure 10: The distribution of highest slope-road coinicidence thresholds in events; the 0,0 bin is the number of
events passing selection requirements that fail to form the minimum 2X+1UV coincidence threshold necessary for
a fit.
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4.3. Incoherent Background175

The default slope-road size and tolerances associated with horizontal and stereo hits used in the above176

studies were configured to optimize algorithm performance, similar to studies in [1]. In order to evaluate177

algorithm performance under conditions with more limited resources, as might be expected at run-time,178

additional studies were conducted with the slope-road size and hit tolerances set equivalent to the sensitive179

area of a single VMM chip4 both with and without generation of incoherent background. The specifics180

of incoherent background generation may be found in Appendix C. The effects of incoherent background181

and larger slope road size are summarized in Figure 11 for efficiencies and in Figure 13 and Table 1 for182

residual of fit quantities.183
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Figure 11: The algorithm and total efficiencies as a function of coincidence threshold for different background
settings and slope-road sizes (standard and wide (one slope road as 1 VMM chip)).

Figure 11 show the effect of both wider slope-roads and the introduction of background on efficiencies.184

The introduction of wider slope-roads increases the chance that an early errant hit (either from secondar-185

ies/ionization or background) will be introduced into the fit, and the presence of incoherent background186

greatly increases the number of such errant hits. Both wider slope-roads and background drive down the187

number of fits (numerator) in both efficiencies, and background can artificially inflate the denominator of188

εalg , a reco-level, slope-road coincidence threshold. The shape of the ε f it versus coincidence threshold189

distributions remains fairly constant with each complicating factor (standard, wider slope-roads, back-190

ground, both wider slope-roads and background), suggesting many muons will simply not be fit with191

any number of hits; ε f it does not take into account the coincidence threshold of tracks that are not fit,192

so the effect appears uniform across coincidence threshold. The effects seen for εalg , which are not193

uniform across coincidence threshold can be better understood when examining the distribution of event194

highest coincidence thresholds, shown for wide slope-roads both without and with background in Figure195

12. Take, for example the 2X+1UV case. The 2X+1UV bin in particular has a marked increase when196

background is introduced. No new, good tracks are introduced between the no backgrond and backround197

4 One VMM is assumed to cover 64 MM strips at 0.445 mm each.
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cases, so the increase is entirely due to bad, background hits; hence, these events do not (and should not)198

fit, causing the particularly pronounced drop in this bin between these two cases in Figure 11.199
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Figure 12: The distribution of highest slope-road coinicidence thresholds in events for the algorithm with wide
slope-roads (width of 1 VMM) both without (a) and with (b) incoherent background; the 0,0 bin is the number of
events passing selection requirements that fail to form the minimum 2X+1UV coincidence threshold necessary for
a fit.

The effect of increasing slope-road size and incoherent background on fit quantity residual rms values as200

a function of pT is shown in Figure 13. As the figure shows, the fitted rms values are fairly robust against201

increased slope-road size and background. This does not hold for all of the raw rms values, however, as202

shown in Table 1. Just as with the efficiencies, the introduction of background has a larger effect than203

that of increased slope-road size, which does not seem to have an overly large impact on any of the fit204

quantities on its own. While ∆θ remains robust to both increased slope-road size and background (likely205

due to the ∆θ cut of 16 mrad built into the algorithm), θ shows some degradation in performance, and206

the φ residual raw rms shows a very large increase upon the introduction of background. Nevertheless,207

the contrasting behavior of the fitted and raw rms values suggests that tracks that drive up the raw rms208

values already had very poor fit quality even before the introduction of background, so the impact on fit209

quantities should remain fairly limited.210

Table 1: The fitted (absolute) σ of fit quantity residuals in mrad under different algorithm settings.

No BG, std No BG, wide BG, std BG, wide
θ 0.364 (0.604) 0.363 (0.542) 0.379 (0.886) 0.380 (1.07)
φ 8.12 (15.0) 7.93 (13.2) 8.20 (24.6) 7.63 (24.8)
∆θ 1.47 (2.69) 1.40 (2.66) 1.50 (2.89) 1.43 (2.90)

As Table 1 shows, rms values appear to be robust to an increase in slope-road size. Nevertheless, though211

the fitted σ residual values are also fairly robust to the introduction of background, the raw rms values212

are not. While the raw ∆θ rms stays stable, both θ and φ suffer noticeable degradation, which suggests213
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Figure 13: The three fit quantity residual rms values as a function of pT for different background settings and
slope-road sizes (standard and wide (one slope road as 1 VMM chip)).

that the introduction of background has a detrimental effect on horizontal slope residual (i.e. on stereo214

strips in particular). This level of degradation is likely acceptable for θ, though further steps may need to215

be taken to address φ.216

4.3.1. BCID217

A fitted track’s BCID is determined by the most common BCID associated with its hits. Concerns were218

raised that this might cause incorrect BCID association for fitted tracks. In order to address this, the219

rate of successful BCID association for fitted tracks was recorded. Figure 14 shows the dependence of220

this success rate as a function of pT and coincidence threshold in the different background and resource221

conditions used in the previous section. The successful BCID identification rate is always over 99.5%,222

demonstrating that this issue is not a concern with the state-of-the-art detector simulation.223

4.4. Charge Threshold224

The MMTP uses the first hits registered passing a charge threshold requirement given in units of electron225

charge. In principle, it would be beneficial to be able to use any hits that are registered regardless of226

deposited charge, but in the high rate environment envisioned for the NSW, this requirement might need227

to be raised. Nominal algorithm settings have this charge threshold requirement set to 1, and studies228

were conducted on algorithm performance for charge threshold values of 0, 1, and 2. Efficiencies as a229

function of coincidence threshold for different charge thresholds are shown in Figure 15. Increasing the230

charge threshold lowers both efficiencies, particularly at high coincidence threshold, which suggests that231

energetic muons with secondaries create both very many hits and hits with higher charge. While the232

shapes of the fit quantity distributions as a function of pT in Figure 16 are fairly constant across charge233

threshold, performance is not. θ and ∆θ show some improvement with higher charge threshold, partic-234

ularly at low pT , suggesting that resolution improves in the vertical direction, but φ shows degradation235

at higher charge threshold, which is a symptom of more highly charged particles experiencing greater236

bending in the ATLAS magnetic field in the φ direction.237
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(a) pT Dependence
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Figure 14: The rate of good BCID association based majority hit BCID as a function of pT and coincidence
threshold.
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Figure 15: The efficiencies as a function of coincidence threshold for charge thresholds of 0, 1, and 2.
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Figure 16: The fit quantity residual rms values as a function of pT for charge thresholds of 0, 1, and 2.
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5. Misalignments and Corrections238

The performance of the trigger algorithm under misalignment has been studied for each of the six align-239

ment quantities (three translations and three rotations all along the principal axes) described in [2] and240

[2], whose convention we will follow here. For the simulated wedge studied here the local coordinates241

described in [2] are taken to be centered at the center of the base of the wedge5, the local t axis corres-242

ponds to the axis of the beam line, the local z axis corresponds to the direction orthogonal to both the243

beam line and the horizontal strips, and the local s axis completes the right-handed coordinate system.244

The rotation angles α, β, and γ correspond to rotations around the local t, z, and s axes, respectively.245

Note that the local s, z, and −t, axes correspond to the usual global x, y, and z axes. Misalignments were246

studied in twenty evenly spaced increments from nominal positions to misalignments of 1.5 mrad for the247

rotations (-1.5 mrad to +1.5 mrad for the γ case), and of 5 mm (a roughly corresponding linear shift) for248

the translations. In all cases, the front quadruplet is misaligned while the rear quadruplet remains in its249

nominal position. While only the front quadruplet of a single wedge is misaligned, the framework for250

misalignment presented below could be used to study generic local and global misalignments. The six251

misalignments are schematically represented in Figure 17.

ds dz dt

dγs dβz

top view

dαt

Figure 17: The different misalignment cases as defined in the AMDB manual.

252

Chamber misalignments manifest themselves as altered strips in algorithm input. In order to simulate253

the effects of misalignment, the change in the local y coordinate—the distance from the bottom wedge254

center in the direction perpendicular to both the beamline and the strip direction—is calculated for a255

5 Not, as is sometimes the case, the centroid position for simplicity’s sake, as the agreed upon geometry of the detector changed
several times while studies were in progress; any transformation in a centroid-origin coordinate system can of course be
formed by a combination of the six transformations examined.
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Table 2: A summary of corrections with additional constants/operations (written as nconstc/nopsop; nX is the num-
ber of X hits in a fit) necessary for analytic corrections. Yes means a correction exists but might not entirely remove
misalignment effects, while yes+ means a quality of correction is only limited by knowledge of misalignment and
memory

∆s ∆z ∆t γs βz αt

Analytic yes+ yes+ yes+ yes no yes
Resources 11c/2op 0c/0op 0c/0op 56c/1op — 400c/2nXop,

32c/12nXop
Simulation yes+ no no no yes+ yes+

track coming straight from the interaction point defined by the truth-level θ and φ angles for generic256

misalignment; details can be found in Appendix D. This displacement in y is then added to input hit257

information and the algorithm is then run normally.258

In order to evaluate algorithm performance under misalignment and corrections for misalignment, the259

absolute means and relative resolutions of the fit quantities θ, φ, and ∆θ are measured as a function of260

misalignment. In the following, results will only be shown for which the effects of misalignment are261

significant. “Significant,” for misalignments of 1 mm (0.3 mrad) for translations (rotations) means more262

than a 5% degradation in rms and/or bias shifts in θ, φ, and ∆θ of 0.01 mrad, 1 mrad, and 0.1 mrad,263

respectively. A full set of plots may be found in Appendix F.264

While corrections are typically done on a case-by-base basis, they fall under two general categories,265

analytic and simulation based. Analytic corrections rely upon specific knowledge of the misalignment,266

with each case being handled separately; as such, the additional resources required, both extra constants267

and operations, if any, vary accordingly. Simulation based corrections are all done in the same manner.268

The algorithm is run over a training MC sample (same setup but with pT = 200 GeVinstead of the normal269

100 GeVsample so as not to overtrain the corrections), and the mean biases for θ, φ, and ∆θ are saved for270

different, equally spaced regions in the η − φ plane over the wedge based on the fitted θ and φ values.271

Currently, these values are saved for 10 η and 10 φ bins (100 η,φ bins total), with the number of bins in272

each direction being a configurable parameter. When the algorithm runs with simulation based correction,273

this table of constant corrections is saved in a LUT before runtime, and corrections are added to final fit274

quantities based on the (uncorrected) θ and φ fit values. With the settings mentioned, this is 300 extra275

constants (10η−bins×10−φbins×3 fit quantities) and two extra operations (a lookup and addition for each276

quantity done in parallel). The simulation correction can, in principle, also be applied to the algorithm277

in nominal conditions with non-trivial improvements, as detailed below in Section 5.1. Depending on278

the misalignment case in question, different approaches work better. A summary of correction methods,279

including resources necessary for the individual analytic cases, is shown in Table 2.280

24th July 2016 – 21:48 17



N
ot

re
vi

ew
ed

,f
or

in
te

rn
al

ci
rc

ul
at

io
n

on
ly

DRAFT

5.1. Simulation Correction of the Algorithm Under Nominal Conditions281

In addition to using simulation based correction to counter the effects of several classes of misalignment,282

the correction can be applied at to the algorithm under nominal conditions. The main effect of this283

correction is to mitigate the effects of the bias in stereo strips discussed in Appendix B. As such, the284

correction has a larger effect on quantities that rely on the aggregate slope my , as can be seen in in Figure285

18, improving σθ f i t−θtru resolution by about 25%, and reducing σφ f i t−φtru by over 50% and restoring a286

largely Gaussian shape. The slight, apparent degradation in ∆θ is due to a more mild version of the effect287

seen in Figure 7.288
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Figure 18: Nominal residual plots for both uncorrected and simulation corrected cases; θ, φ, ∆θ for pT = 100
GeVmuons

As can be seen in Figure 19, the simulation based correction also removes the η dependence to fit quantity289

resolution distributions, as expected. One consequence of this is that simulation-based corrections applied290

to the misalignment cases below will restore performance to the “sim” and not the “std” distriubtions of291

Figure 18. Hence, when making comparisons between simulation corrected curves and the nominal292

performance point, simulation-corrected distributions of benchmark quantities versus misalignment will293

often look generally better.294

That the improvements from a simulation-based correction improve performance of the algorithm in295

nominal conditions most for the quantities that depend most on stereo information (φ and θ) and remove296

the η dependence of fit quantity resolutions suggests that there could, in principle, be analytic corrections297

that could be applied to the nominal algorithm. One possible solution is to introduce an additional set of298
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Figure 19: Nominal residual plots as a function of η with points as means and error bars as rms values in each η bin
for the angles θ, φ, ∆θ for pT = 100 GeVmuons in the uncorrected and simulation corrected cases.

constants, having the ybase depend on the strip number, similar to the γs correction for zplane described299

in Section 5.5, which would add a lookup per hit and 8×nbins,y extra constants that would be optimized300

as the γs correction was.301

Mhit =
y

z
=

ybase

zplane
(nstr ) +

wstr

zplane
nstr (4)

The simulation correction residual rms values suggest a limit on the quality of an such correction and302

could perhaps be implemented generically on their own regardless of misalignment for rms values on fit303

quantities of 0.291 mrad for θ, 3.19 mrad for φ, and 1.54 for ∆θ, which represent a 20% improvement for304

θ, a 62% improvement for φ, and a slight degradation in ∆θ of 4.7%, again owing to an effect similar to305

the one in 7.306
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5.2. Translation Misalignments Along the Horizontal Strip Direction (∆s)307

A translation in s (i.e. along the direction of a horizontal strip) only affects the stereo strips, and, since the308

stereo angle is small, a very large misalignment is necessary for effects to be noticeable (a misalignment309

of roughly 17 mm corresponds to one strip’s misalignment in the stereo planes). The only quantity to310

show any meaningful deviation with misalignments with translations in s is the φ residual bias (a change311

of 0.4 mrad at ∆s = 1 mm), as can be seen in the uncorrected curve of Figure 20.312

A translation in s induces a constant shift in the calculated horizontal slope, mx in Equation 2. This con-313

stant shift should only depend on which stereo planes included in a fit are misaligned and how misaligned314

they are. Hence, the correction to mx , for a sum over misaligned stereo planes i, with their individual315

misalignments in s and plane positions in z is:316

∆mx =
1

Nstereo

∑
i,misal stereo

∆si
zi,plane

(5)

Given prior knowledge of misalignment, these corrections to mx can be performed ahead of time and317

saved in a lookup table (LUT), similar to the LUT used for constants in the X local slope (M l
X ) calculation.318

The added overhead of this analytic correction is hence eleven constants in memory, a lookup, and one319

addition. The correction perfectly corrects the effects of misalignment, as can be seen in Figure 20.320

The simulation based correction described above can also be used to correct for ∆s misalignments, with321

the results of that correction also shown in Figure 20. The apparent discrepancy between the simulated322

and analytic correction is a natural consequence of the fact that the simulation correction, as previously323

mentioned, restores the φ residual distribution to an overall more Gaussian shape.324
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Figure 20: The mean of the φ residual as a function of misalignment for the uncorrected case and the analytic and
simulation correction cases.
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5.3. Translation Misalignments Orthogonal to the Beamline and Horizontal Strip325

Direction (∆z)326

A translation in AMDB z, the direction orthogonal to both the beamline and the horizontal strip direction,327

corresponds to a translation in the y of Equation 1, affecting all slope calculations. This has a large impact328

on the θ residual bias and both the bias and rms of ∆θ residual, as can be seen in Figures 21 (a)–(c). The329

marked degradation and non-linear behavior in performance at very high levels of misalignments is a330

result of low statistics; there are fewer fits at high level of misalignments since for ∆z & 3 mm, most331

fits will fail the ∆θ cut6. The θ bias shifts by about 0.075 mrad at ∆z = 1 mm, and ∆θ shifts by about 5332

mrad for the same level of misalignment. While the fitted rms of the ∆θ residual remains fairly stable for333

∆z < 1 mm or so, between ∆z = 2 mm and ∆z = 3 mm, the rms increases by 15% before the ∆θ cut issue334

mentioned above intervenes.335

Fortunately, these misalignments are straightforward to correct with knowledge of the misalignment. The336

only modification necessary for this correction is to change the definitions of ybase in Equation 1 for the337

individual hit slope addressing. This is done before runtime and adds no overhead to the algorithm, and338

the correction quality is only limited by knowledge of the misalignment. The results of this correction are339

also shown in Figures 21 (a)–(c) and restore nominal performance.
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Figure 21: The affected quantities of ∆z misalignments: θ bias, ∆θ bias, and σ∆θ f i t−∆θtru/σnominal for both the
misaligned and corrected cases.

340

6 Since ∆θ =
M l

X−M
g
X

1+M l
X M

g
X

and M l
X

= Bk
∑

yi (z/z̄ − 1), a shift ∆y translates (with typical slope values of ∼ 0.3) to

5Bk (z1 + z2) /z̄ (with Bk in units of inverse mm); set equal to 16 mrad (∆θ is centered at zero), this corresponds to ∆y = 2.7
mm
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5.4. Translation Misalignments Parallel to the Beamline (∆t)341

The effects of misalignment due to translations in t are very similar to those due to translations in z342

without the complication of the ∆θ cut, affecting the z instead of the y coordinate that enters into hit slope343

calculations. Again, θ bias, ∆θ bias, and σ∆θ f i t−∆θtru are the primarily affected quantities. For ∆t = 1344

mm, θ bias shifts by about 0.02 mrad, ∆θ bias shifts by just under 2 mrad, and σ∆θ f i t−∆θtru degrades by345

about 20%. The correction for this misalignment once again costs no overhead and consists of changing346

stored constants in the algorithm, in this case the positions along the beamline of the misaligned planes,347

with results similarly limited by knowledge of the misalignment. The slight improvement with correction348

to ∆θ rms is due to the real effect of a larger lever arm. Both the misaligned and corrected distributions349

of affected quantities of interest are shown in Figure 22.
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Figure 22: The affected quantities of ∆t misalignments: θ bias, ∆θ bias, and σ∆θ f i t−∆θtru/σnominal for both the
misaligned and corrected cases.

350
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5.5. Chamber Tilts Towards and Away from the IP (γs Rotation)351

Chamber misalignment due to rotations around the s axis act effectively like a translation in t that depends352

on strip number. These rotations tilt misaligned chambers away from (towards) the IP for positive (negat-353

ive) values of γs . Since, unlike for the other two rotation cases that will be studied, positive and negative354

rotation values are not symmetric, this misalignment is studied for both positive and negative γs values.355

The divergent effect at the tails is a result of a large population of fits not having fit quantities within the356

cores, and so not appearing in the fit rms. Once again, affected quantities of interest θ bias, ∆θ bias, and357

σ∆θ f i t−∆θtru . The effects of misalignment can be seen in Figures 23 (a)–(c). The relationship between358

biases and γs is roughly linear with ∆γs = 0.3 mrad (the angular scale corresponding to linear shifts359

of ∼ 1 mm) corresponding to 0.005 mrad (0.12 mrad) for θ (∆θ). For σ∆θ f i t−∆θtru , degradation is not360

symmetric. For negative (positive) γs , with the quadruplet tilted towards (away from) the IP, slope-roads361

are artificially expanded (shrunk), decreasing (increasing) the granularity of the trigger, explaining the362

asymmetry in Figure 23 (c), with the degradation being a 10% (25%) effect for γs of +(-)0.3 mrad.363

Corrections are less simple in this case. In principle, corrections of the same accuracy of the translations364

could be calculated per strip, but the overhead of one correction per strip (many thousands of constants)365

is prohibitive. Instead, each plane was divided into eight equal segments with a t value (z in the slope366

calculation) assigned to strips in each region to correct for the misalignment. This amounts to 56 extra367

constants and a 2D instead of a 1D LUT for z positions while the algorithm runs. The corrected distri-368

butions can also be seen in Figures 23 (a)–(c). The corrections, while not as effective as for the simple369

translation cases, are still very effective with the quoted misalignment values for bias shifts down to 0.001370

mrad (0.25 mrad) for θ (∆θ) and no more than a 2% degradation in σ∆θ f i t−∆θtru for |γs | = 0.3 mrad.
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Figure 23: The noticeable effects of rotations in the s axis and the behavior of these quantities (θ and ∆θ bias shifts
and σ∆θ f i t−∆θtru/σnominal ) with and without misalignment correction.

371
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5.6. Rotation Misalignments Around the Wedge Vertical Axis (βz)372

While misalignments coming from rotations around the z axis (the direction orthogonal to both the beam-373

line and the horizontal strip direction) foreshorten the strips as seen from the IP and add a deviation in t,374

the long lever arm largely washes out any effects of this misalignment. Only the σ∆θ f i t−∆θtru is notice-375

ably affected, though only at severe misalignments, with only about a 1% degradation in performance at376

βz = 0.3 mrad (corresponding to a linear shift of ∼ 1 mm). A simulation based correction works well to377

cancel out the effects of this misalignment, and the σ∆θ f i t−∆θtru as a function of misalignment with and378

without corrections are shown in Figure 24. The apparent 2% effect in the simulation corrected curve is a379

result of a more mild version of the effect shown in Figure 7.380
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Figure 24: The effects of rotations in the z axis on σ∆θ f i t−∆θtru/σnominal a function of βz both with and without
misalignment corrections.
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5.7. Rotation Misalignments Around the Axis Parallel to the Beamline (αt)381

Misalignments arising from rotations around the t axis (parallel to the beamline at the center of the base382

of the wedge) are essentially rotations in the φ direction. The quantities of interest most affected are the φ383

bias and σ∆θ f i t−∆θtru , as shown in Figures 25 (a) and (b), respectively, and correspond to a shift in φ bias384

of 0.2 mrad and a 10% degradation in σ∆θ f i t−∆θtru for αt = 0.3 mrad (corresponding to a linear shift of385

∼ 1 mm). The raw instead of fitted mean φ biases is used in Figure 25 (a) to better illustrate the effect of386

misalignment.387

Since the effect of misalignment is dependent on horizontal (along the strip direction, ŝ) in addition to388

vertical information, corrections cannot be applied before a fit takes place. The φ bias shift is uniform over389

the entire wedge, so a constant additive correction to φ based on the level of misalignment can be applied390

to all fits depending on how many misaligned stereo planes enter in the fit. ∆θ is less straightforward,391

but corrections to the y and z information used in the local slope calculation in Equation 2 can be applied392

once θ f it and φ f it are known. These corrections are calculated ahead of time in bins of uniform η and φ393

as with the simulation corrections using the same framework as the misalignment calculation in Appendix394

D. The results of both types of correction can be seen in Figure 22. The apparent discrepancy between the395

simulation and analytic corrections in the φ bias happens for the same reason as in the ∆s misalignment396

correction cases, as simulation correction restores a more Gaussian shape to the φ residual distribution397

opposed to the uncorrected nominal case, as discussed in Section 5.1.398
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Figure 25: The effects of rotation misalignments around the t axis for φ bias and σ∆θ f i t−∆θtru/σnominal as a
function of misalignment. The uncorrected and both the analytic and simulation correction cases are shown.
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6. Conclusion399

The algorithm for Micromegas detectors in the NSW Trigger Processor performs well in a variety of con-400

ditions and has proven robust to a number of effects to deliver measurements on muon tracks of the three401

angles θ, φ, ∆θ. Under nominal conditions, the rms values for the residuals of these quantities are 0.364402

mrad for θ, 8.12 mrad for φ, and 1.47 mrad for ∆θ. Algorithm performance was found to be largely inde-403

pendent of the charge threshold setting, and a hit majority BCID association was found to provide proper404

timing information over 99.7% even in the most relaxed settings (2X+1UV coincidence threshold require-405

ment+wide slope-road+background). The introduction of wide slope-roads to better mimic potentially406

limited algorithm resources at run time and the introduction of incoherent background was found to have407

a manageable effect on fit quantity residual rms values and on total algorithm efficiency for sufficiently408

stringent coincidence threshold. The effects of the three translation and three rotation misalignments409

specified by AMDB convention were studied, and correction methods for each of the six cases was de-410

veloped. Simulation-based corrections were found to improve nominal algorithm performance to residual411

rms value of 0.291 mrad for θ, 3.19 mrad for φ, and 1.54 for ∆θ, which represent improvements of 20%,412

62%, and -4.7%, respectively. Misalignment corrections were found to restore nominal performance for413

all but the rotation around the s axis, and a summary of tolerances may be found in Table 3.414

Table 3: A summary of levels of misalignment corresponding to a 10% degradation in any residual rms or, for biases
shifts of, 0.01 mrad for θ, 1 mrad for φ, and 0.25 mrad for ∆θ for both the uncorrected and corrected cases; > 5 mm
and > 1.5 mrad mean that such a degradation does not occur for the range of misalignment studied. Most affected
quantity in parentheses.

No Correction Correction
∆s 4 mm (φ bias) > 5 mm
∆z 0.25 mm (∆θ) > 5 mm
∆t 0.25 mm (∆θ) > 5 mm
γs 0.15 mrad (∆θ bias) 0.75 mrad
βz 0.9 mrad (∆θ rms) > 1.5 mrad
αt 0.375 mrad (∆θ rms) > 1.5 mrad
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Appendix415

A. Changes to Local Slope Calculation for Fixed Point416

The local X slope is expressed in [1] as:417

M local
X = Ak

∑
i

yi zi − Bk

∑
i

yi , Bk =
1
n

∑
i

zi Ak = z̄ Ak (6)

Procedurally, this entails doing the sums over yi and yi zi , multiplying the sums by Ak , Bk , and then418

subtracting both of these numbers, O
(
103

)
, to get local slopes, O

(
10−1

)
, while requiring precision on419

these numbers on the order of O
(
10−3

)
. This requires precision in the sums O

(
10−7

)
, and with 32 bit420

fixed point numbers, there are deviations with respect to the floating point calculations at the level of421

O
(
10−5

)
, which is enough to introduce a significant bias in the ∆θ calculation.422

In order to prevent these errors, we do the subtraction first423

M local
X = Ak

∑
i

yi zi − Bk

∑
i

yi = Ak

∑
i

(yi zi − yi z̄) = Bk

∑
i

yi

( zi
z̄
− 1

)
(7)

Thus, we change the order of operations and store 1/z̄ instead of Ak in addition to Bk . We also change424

the units of yi and zi in the calculation by dividing the millimeter lengths by 8192.7 With these changes,425

a 32 bit fixed point based algorithm has essentially identical performance to that of an algorithm based426

on the usual C++ 32 floating point numbers. Future work includes converting the 32 bit fixed point427

arithmetic to 16 bit where possible in the algorithm. While introducing 16 bit numbers uniformly might428

seem preferable, since simple 16-bit operations in the firmware can be done in a single clock tick, and a429

larger number of bits increases the algorithm latency, some numbers in the algorithm will require a larger430

number of bits, in particular in the local slope calculation, which is the single calculation in the algorithm431

requiring the largest numeric range.432

7 Chosen since it is a perfect power of 2 and of order the length scale of z in millimeters
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B. Biases in the φ Calculation433

While the θ and ∆θ distributions have a mostly Gaussian shape, the φ resolution distribution has a434

markedly non-Gaussian shape. In order to verify the algorithm was performing correctly, all of the al-435

gorithm slope inputs were verified to match up to their truth-level values (calculated using truth-level436

angles). Some such plots are shown in Figure 26, and, as can be seen from the figure, all input quantities437

have some η dependence.438
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Figure 26: The mean of the residuals (fit value less truth value) of algorithm input slopes as a function of η. Note
that the discontinuity in all three plots is a feature of the fact that each plane is divided into two stations in η, the
positions of which are configured independently. Error bars are the rms in each bin.

This dependence is limited for both Mglobal
X and M local

X but is noticeable for mx , the slope corresponding439

to the horizontal coordinate used in fit angle calculations. This quantity depends heavily on information440

from hits in the stereo planes. The geometry of detector setup used in this simulation explains both the η441

dependence of all the quantities in Figure 26 and the stronger dependence for mx in particular. A cartoon442

of a muon track moving through an octuplet in the NSW with its resulting ionization is shown in Figure443

27.444

As the figure shows, the geometry is such that hits in stereo U (V) planes tend to be biased downwards445

(upwards), while biases among the horizontal hits will tend to cancel. The size of this effect depends446

on the slope of the track and, hence, on η. This η dependent bias can be seen in Figure 26. Recalling447

Equation 3, φ depends most heavily on the stereo strip information, while θ and ∆θ depend much more448

heavily on the horizontal strip information. This can be seen in Figure 28, where the relative shift in θ449

and ∆θ is similar to that of the two MX slopes in Figure 26, and that of φ is similar to mx .450

As to the overall accuracy of the φ calculation given the non-trivial overall bias of about 0.5 mrad, geo-451

metric parameters of the wedge (not properly defined in the software release) were tuned so that biases of452

input reconstructed means truth slope distributions were centered at zero. Example distributions of such453

quantities can be seen in Figure 29. The size of the bias can be attributed to the large smear that arises454

from the larger station at higher η, which causes the features in Figures 26 (a), 28 (a), and ultimately the455

overall shape in the φ residual distribution.456
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X X UU VV UU VV X X

μ

Figure 27: A cartoon of a muon (purple) passing through the NSW. Gaseous regions are shown in gray, horizontal
plane strips shown in black, U (V) stereo plane strips shown in blue (green), and ionization in red.
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Figure 28: The resolutions (fit value less truth value) of algorithm output angles as a function of η. Note that the
discontinuity in all three plots results from the fact that each plane is divided into two stations in η, the positions of
which are configured independently. Error bars are the rms in each bin.
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Figure 29: Example calibration plots for input slopes—in these cases resolutions for the X (a), U (b), and V (c)
planes in a row in the first quadruplet.
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C. Background Rates Normalization457

Incoherent background is generated based on the assumption that the intensity only varies as a function of458

the distance from a point to the beamline, r . The number of hits per unit area per unit time as a function459

of r is given in Equation 8 and taken from [1].460

I = I0 (r/r0)−2.125 (8)

where r0 = 1000 mm and I0 = 0.141 kHz/mm2
461

Background generation happens per event as follows:462

1. Determine the total number of hits to be generated in this event according to a Poisson distribution463

2. Assign a time to hits uniformly in [tstar t − tVMM , tend] where start and end are for the event clock464

and tVMM is the VMM chip deadtime (100 ns)465

3. Assign a plane to hits uniformly466

4. Assign a φ value to hits uniformly467

5. Assign an r to hits according to Equation 8468

6. Calculate hit information according to these values.469

The expectation value for the Poisson distribution is determined by integrating Equation 8 over the surface470

area of the wedge to get the total hit rate for the wedge, Γ, and then multiplying this by the length of the471

time window over which hits may be generated. With H = 982 mm, h1 = 3665 mm, and θw = 33π/180,472

we find8:473

Γ = 2I0r2.125
0

∫ θw/2

0
dφ

∫ (H+h1) secφ

H secφ
r dr r−2.125 = 98.6657 MHz (9)

In this case, we have taken the nominal values of the MM sector geometry for H (wedge base), h1 (the474

wedge height), and θw (the wedge opening angle).475

8 Using Mathematica and the extra factor of r from the volume element
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D. Generic Calculation of Misalignment476

Table 4: A summary of notation used in this section: note that non-AMDB notation is used in this section.

Symbol Definition
sx , sy , sz ,~s Position of the muon hit in ATLAS global coordinates; the infinite momentum muon

track
n̂ Vector normal to the plane; taken to be ẑ (the beamline) in the nominal case
Og,l

I P Position of the interaction point in ATLAS global (g) or wedge local (l) coordinates
Og,l

base
Position of the plane base in ATLAS global (g) or wedge local (l) coordinates;(
0, ybase , zpl

)
((0,0,0)) for the nominal case in global (local) coordinates

~ζ ~s − ~Obase

primed quant. quantities after misalignment

Generically speaking, a hit is the intersection of a line (the muon track) with a plane (the individual plane477

in the multiplet). We assume the muon moves in a straight line defined by the origin and the truth-level478

θpos and φpos (i.e. the infinite momentum limit) and that the MM plane is rigid and defined by a point,479

which we take to be the center of the bottom edge of the plane, and a normal vector, which we take to the480

z axis in the nominal case.481

The coordinate axes x, y, z axes used here correspond to the usual AMDB s, z,−t axes. Since the direction482

does not really matter when studying misalignment or corrections thereof, the major difference is the483

choice of origin.484

The muon track we denote9 ~s, the bottom point of the plane ~Obase , and the normal vector n̂. The muon485

track will always be given as (the wedge gets moved, not the muon):486

~s = OI P + k ŝ (10)

ŝ = sin θpos sin φpos x̂ + sin θpos cos φpos ŷ + cos θpos ẑ (11)

~sg = k ŝ =
zpl

cos θpos
ŝ = zpl (tan θ sin φx̂ + tan θ cos φŷ + 1) (12)

where k ∈ R, along with the unit vector ŝ, defines the point where the track intersects the wedge.487

Rotations are done before translations, according to the order prescribed in the AMDB guide for chamber488

alignment, so the axes the principal axes of the plane are rotated according to the following matrix (where489

s, c, and t are the obvious trigonometric substitutions)490

*..
,

1 0 0
0 cγ −sγ
0 sγ cγ

+//
-

*..
,

cβ 0 sβ
0 1 0
−sβ 0 cβ

+//
-

*..
,

cα −sα 0
sα cα 0
0 0 1

+//
-

=
*..
,

1 0 0
0 cγ −sγ
0 sγ cγ

+//
-

*..
,

cαcβ −sαcβ sβ
sα cα 0
−cαsβ sαsβ cβ

+//
-

=
*..
,

cαcβ −sαcβ sβ
sαcγ + cαsβsγ cαcγ − sαsβsγ −cβsγ
sαsγ − cαsβcγ cαsγ + sαsβcγ cβcγ

+//
-

= A

(13)

9 Recall φpos is defined with respect to the y axis instead of the x axis, as might otherwise be typical.
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The thing that matters is what the new strip hit is—i.e. what the new y value is since this, along with491

a plane number, is all that is fed into the algorithm. To find this, we must solve for the new point of492

intersection with the rotated plane and then apply the effects of translations. The path connecting the base493

of the wedge with the intersection of the muon track will always be orthogonal to the normal vector of494

the plane. Our quantities after misalignment, denoted by primed quantities, will look like495

Obase → Obase + dsx̂ + dz ŷ + dt ẑ = O ′base , n̂ → An̂ = Aẑ = ẑ′, ~s → k ′ ŝ + OI P = ~s′ (14)

so, moving to explicit, global coordinates in the last line so we can do the computation (relying on the496

fact that any vector in the wedge, namely ~ζ = ~s − O the local coordinates of the interaction point, is497

necessarily orthogonal to n̂):498

0 = n̂ ·
(
~Obase − ~s

)
→ 0 = Aẑ′ ·

(
~O ′base −

(
k ′ ŝ + ~OI P

))
(15)

→ k ′ =
sβO ′

base−I P,x
− cβsγO ′

base−I P,y
+ cβcγO ′

base−I P,z

ŝ · ẑ′
(16)

=
sβds − cβsγ (ybase + dz) + cβcγ

(
zpl + dt

)
sβsθsφ − cβsγsθcφ + cβcγcθ

(17)

To find our new y coordinate, we need to evaluate s′y = ŷ′ · k ′~s to find the final correction of:499

∆y = ~ζ ′ · ŷ′ − ~ζ · ŷ =
(
k ′ ŝ − ~O ′base

)
· ŷ′ −

(
sy − ybase

)
(18)

The correction will be plane dependent since (denoting the stereo angle ω):500

ŷX = ŷ → ŷ′X = −sαcβ x̂ + (cαcγ − sαsβsγ) ŷ + (cαsγ + sαsβcγ) ẑ (19)

and501

ŷU,V = ± sω x̂ ′ + cω ŷ′U,V =
[
±cαcβsω − sαcβcω

]
x̂ +

[
± (sαcγ + cαsβsγ) sω

+ (cαcγ − sαsβsγ) cω
]
ŷ +

[
± (sαsγ − cαsβcγ) sω + (cαsγ + sαsβcγ) cω

]
ẑ

502

D.1. Individual Cases503

Currently we only study the cases where one misalignment parameter is not zero. We examine these in504

detail below, calculating the most pertinent quantities in the misalignment calculation, k ′/k and the new505

horizontal and stereo y axes. Before setting out, we simplify the expressions for the transformed ŷ′’s,506

removing any terms with the product of two sines of misalignment angles, which will be zero.10507

ŷ′X = −sαcβ x̂ + cαcγ ŷ + cαsγ ẑ (21)

ŷ′U,V =
[
±cαcβsω − sαcβcω

]
x̂ +

[
±sαcγsω + cαcγcω

]
ŷ +

[
∓cαsβcγsω + cαsγcω

]
ẑ (22)

If the translations are zero,508

k ′ =
−cβsγybase + cβcγzpl

sβsθsφ − cβsγsθcφ + cβcγcθ
, k ′/k =

−cβsγybase/zpl + cβcγ
sβtθsφ − cβsγtθcφ + cβcγ

(23)

10 If only one misalignment parameter is non-zero, then two or more sines will contain at least one term will contain sin 0 = 0.
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D.1.1. ds , 0509

k ′/k = 1 (the point of intersection does not move closer or further from the IP), and only the stereo planes510

are affected. Note that only relevant term in Equation 18, for the stereo strip ŷ for ~O ′
base

= dsx̂ is:511

± sinωds ≈ ±0.0261ds (24)

meaning that a displacement in x of 17 mm, more than three times the range of misalignments studied,512

would be necessary for a shift in the stereo planes corresponding to one strip width.513

D.1.2. dz , 0514

k ′/k = 1 (the point of intersection does not move closer or further from the IP). This case is the trivial one515

(cf. Equation 18 with ~O ′
base

= dz ŷ). y just gets moved in the opposite direction as the wedge. Correction516

is an additive constant.517

D.1.3. dt , 0518

k ′/k =
(
zpl + dt

)
/zpl . y gets modified by a simple scale factor. Correct by storing changing definitions519

of plane positions in algorithm to match the misaligned values.520

D.1.4. α , 0521

k ′/k = 1 and522

ŷ′X = −sα x̂ + cα ŷ (25)

ŷ′U,V = [±cαsω − sαcω] x̂ + [±sαsω + cω] ŷ (26)

D.1.5. β , 0523

We have k ′/k = (1 + tan β tan θ sin φ)−1, and524

ŷ′X = ŷ (27)

ŷ′U,V = ŷ ± (cβ x̂ − sβ ẑ) sω (28)

D.1.6. γ , 0525

k ′/k =
1 − tan γ ybase

zpl

1 − tan γ tan θ cos φ
(29)

ŷ′X = cγ ŷ + sγ ẑ (30)

ŷ′U,V = ±sω x̂ + cω ŷ − sγcω ẑ (31)
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E. Addressing MM Chamber Deformations Due to Gravity526

Preliminary studies by the Saclay group have indicated that the Micromegas chambers will undergo con-527

tinuous deformations at the scale of approximately half a millimeter due to the 0.7 degree tilt of the LHC528

ring combined with gravity. We have modeled the deformation as a combination of a twist βz around the529

vertical axis orthogonal to the beamline and horizontal strip direction and a tilt γs around the horizontal530

axis in the strip direction at the chamber base, using the above misalignment and correction studies as a531

benchmark in each case. In addition to the two angular displacements, concerns have been raised over532

the effect of the non-planarity of the chambers, as misalignment studies were done under the assumption533

that chambers are rigid planes. One of the large sectors with the most severe deformations can be seen in534

Figure 30 taken from [3].

Figure 30: Large sector deformations

535

Before giving estimates of the impact of deformation on performance, it should be noted that in all of536

the cases examined, the quantity most affected is ∆θ through the local slope calculation. Misalignment537

studies had one quadruplet in its nominal position and the other misaligned. This means that the bias538

in the local slope calculation has as non-trivial dependence on track θ,φ, which induces a larger total539

rms when integrated over an entire sector. If all planes (i.e. both quadruplets) experience the same mis-540

alignment/deformation, such systematic, position dependent bias is largely mitigated (though an overall541

average bias may not be). Since the recently reported deformations appear to have both quadruplets in a542

given chamber affected in the same way, we likely find ourselves in the latter, less severe case for ∆θ rms,543

so the numbers quoted for degradation should be considered a conservative upper limit.544
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(a) The effect of βz on ∆θ rms
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Figure 31: The effects of rotations in the z and (s) axes on σ∆θ f i t−∆θtru/σnominal a function of βz (γs) in (a) ((b))
both with and without misalignment corrections.

E.1. The twist βz545

This effect, while the most dramatic in the pictures, probably does not have any noticeable effect on546

performance, as a 10% degradation in performance corresponds to βz = 1 mrad, equivalent to a more547

than 3 mm linear translation, much greater than scales currently under consideration. At the maximal 1548

mm levels quoted, this is a 1% effect, as can be seen in Figure 31 (a), reproduced from Section 5.5.549

E.2. The tilt γs550

The tilt is the deformation that is the most concerning, as detailed in 5.5. The 1 mm level of maximal de-551

formation corresponds to γs = 0.3 mrad, while the intermediate deformation value of 0.5 mm corresponds552

to γs = 0.15 mrad. In the misalignment studies, this could correspond to a 20% (10%) degradation in ∆θ553

resolution for 1 mm (0.5 mm) level deformations, as seen in Figure 31 (b). While the two quadruplets hav-554

ing equivalent deformations should mitigate this effect somewhat, corrections might be necessary here.555

These corrections, also outlined in Section 5.5, consist of dividing up each plane into eight equal segments556

in y (AMDB z) for a total of 64 constants (56 extra). While 64 total constants was more than sufficient557

for the studies in this note, if the deformations were severe and localized to one half of the chamber,558

then additional constants (naïvely twice as many) would probably be necessary to ensure the same level559

of performance. As Figure 31 (b) also, shows, these corrections make this deformation/misalignment a560

< 5% effect.561
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E.3. Non-planarity562

Studies by Saclay have non-planarity effects inducing a 0.25 mm RMS to using the naïve rigid plane as-563

sumption. Misalignments of this order have the largest effect in the directions orthogonal to the horizontal564

strip direction (∆z and ∆t), for which there was a 10% effect. Again, this figure is most certainly very565

conservative, as the effect of a general smearing would not be as deleterious as systematic shift of only566

one quadruplet. A summary of studies of these effects can be found in [3].567

E.4. Estimate of Upper Limit of Overall Effect568

In order to estimate the total effect of the deformations, we assume that only γs contributes. We take the569

γs corresponding to the peak to peak deformation value to affect half of each chamber. We also take the570

worse case for the sign of γs . Both of these assumptions are conservative, and so the figure presented571

here should be considered an upper limit.

Table 5: A summary of the deformation upper limit effect calculation. Even though both the positive and negative
γs numbers are given, only the more severe (negative) numbers are used in the calculation.

γs
(
lpk−to−pk

)
- (+) γs % ∆θ degradation nchamber s

0.1 mrad (0.33 mm) 5 (0)% 5 (EISC06, 08, 10, 12)
0.15 mrad (0.5–0.6 mm) 8 (0)% 6 (EISC02, 14, 15; EILC07, 09)
0.3 mrad (0.8–1.0 mm) 20 (6)% 3 (EILC01, 03, 15)
0.375 mrad (1.25 mm) 28 (15)% 2 (EISC05, 13)
TOTAL (25 + 48 + 60 + 56) % × 1

2 ×
1
16 = 6%

572

E.5. Conclusions573

If nothing is done to correct for the deformations in the MM chambers, the above calculation shows that574

we can expect the effect to be at most 6% assuming the worst conditions from misalignment studies.575

Hence, the statement that this will be no more than a 10% effect seems more than reasonable. Never-576

theless, corrections for the deformations presented do seem possible using the formalism and techniques577

presented in the note, and the case of most concern, the γs correction, can be addressed with the addition578

of 56 constants and two operations.579
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F. All Misalignment/Correction Plots580

All plots for misalignment and all relevant misalignment correction types for fit quantities θ, φ, ∆θ bias581

means and standard deviations for each of the six misalignment cases studied ∆s (Figure 32), ∆z (Figure582

33), ∆t (Figure 34), γs (Figure 35), βs (Figure 36), and αt (Figure 37)583
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(f) ∆θ rms/mis
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Figure 32: Biases [rms] of fit quantities θ (a) [(d)], φ (b) [(e)], and ∆θ (c) [(f)] as a function of ∆s.

24th July 2016 – 21:48 38



N
ot

re
vi

ew
ed

,f
or

in
te

rn
al

ci
rc

ul
at

io
n

on
ly

DRAFT

(a) θ bias/mis
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(b) φ bias/mis
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Figure 33: Biases [rms] of fit quantities θ (a) [(d)], φ (b) [(e)], and ∆θ (c) [(f)] as a function of ∆z.
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Figure 34: Biases [rms] of fit quantities θ (a) [(d)], φ (b) [(e)], and ∆θ (c) [(f)] as a function of ∆t.
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Figure 35: Biases [rms] of fit quantities θ (a) [(d)], φ (b) [(e)], and ∆θ (c) [(f)] as a function of γs .
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Figure 36: Biases [rms] of fit quantities θ (a) [(d)], φ (b) [(e)], and ∆θ (c) [(f)] as a function of βz .
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Figure 37: Biases [rms] of fit quantities θ (a) [(d)], φ (b) [(e)], and ∆θ (c) [(f)] as a function of αt
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