

HTCondor Training

5/12/2017 2

Florentia Protopsalti IT-CM-IS

Overview

• HTCondor Batch System

• Job Submission

• Investigating Failed Jobs

• Input And Output Files

• Exercises

5/12/2017 3

HTCondor Batch System

5/12/2017 4

Machine Ownership

5/12/2017 5

Serial Submission

Batch takes some time

Waste of resources

Time (sec)

Running

Jobs

Submission of 100 jobs – 10 machines

1K * 100 1h jobs = 100K

CPU hours ≈ 11.4 job slots

Timesharing

5/12/2017 6

Can be used by othersParallel Submission

Batch runs quicker

Time (sec)

Running

Jobs

Submission of 100 jobs – 100 machines

Batch Scheduling

5/12/2017 7

Time (hours)

Running

Jobs

CERN Batch System

CERN Batch Service

• Delivers computing resources

• To the experiments and departments for tasks e.g.

• Physics event reconstruction

• Data analysis

• Simulation

• It shares the resources fairly between all users

• Current capacity approximately 120,000 cores

5/12/2017 8

HTCondor
• Open-source batch system implementation

• Center for High Throughput Computing
• University of Wisconsin–Madison.

• It provides
• Job queueing mechanism

• Scheduling policy

• Resource monitoring

• Resource management

5/12/2017
http://research.cs.wisc.edu/htcondor/ma

nual/
9

HTCondor Workflow

5/12/2017 10

user

user

user

HTCondor

System

Worker

node

Worker

node

Worker

node

job

job

job

job

job

job

HTCondor Service Components

5/12/2017 11

Negotiator Collector

Submit machine Worker node

Scheduler

Central Manager

File Transfer Mechanism
condor_submit <name_of_file>

AFS

EOS

The Central Manager
• Composed of the Collector and Negotiator daemons.

• The Collector
• Collects information on machines in the pool

• Collects information on the jobs in the queue

• Collecting information from all the daemons in the pool

• It accepts queries from other daemons and user-level command (e.g.
condor_q)

• The Negotiator
• Negotiates between machines and machines requests (job)

• Asks for a list with all the available machines from the collector

• Matches jobs and machines considering the job requirements

5/12/2017 12

Negotiator: Matchmaking

5/12/2017 13

One shadow for

every running job

One starter for

every claimed slot

Schedd’s

Daemon

Worker

node’s

Daemon

condor_schedd

shadow starter

condor_startd

ClassAds
• The framework by which Condor matches jobs with machines

• They are analogous to the classified advertising section of the newspaper
• users submitting jobs are buyers of compute resources

• machine owners are sellers.

• Used for
• Describing and advertising

• Jobs

• Machines

• Matching jobs to machines

• Statistical purposes

• Debugging purposes

5/12/2017 14

Example ClassAds

5/12/2017 15

Job ClassAd

AccountingGroup = “name of accounting group"

ClusterId = 9

Cmd = "/afs/cern.ch/…/welcome.sh"

CompletionDate = 0

CondorPlatform = "$CondorPlatform: x86_64_RedHat7 $"

CondorVersion = "$CondorVersion: 8.5.8 Dec 13 2016

BuildID: 390781 $"

DiskUsage = 1

EnteredCurrentStatus = 1493728837

Err = "error/welcome.9.0.err"

ExitBySignal = false

ExitStatus = 0

FileSystemDomain = "cern.ch"

GlobalJobId = "bigbird06.cern.ch#9.0#1493728837"

Hostgroup = "$$(HostGroup:bi/condor/gridworker/share)"

JobPrio = 0

JobStatus = 1

JobUniverse = 5

NumJobCompletions = 0

NumJobStarts = 0

NumRestarts = 0

Machine ClassAd

COLLECTOR_HOST_STRING = “*.cern.ch, *.cern.ch"

CondorLoadAvg = 0.0

CondorPlatform = "$CondorPlatform: x86_64_RedHat6 $"

CondorVersion = "$CondorVersion: 8.5.8 Dec 13 2016 BuildID: 390781 $"

Cpus = 8

FileSystemDomain = "cern.ch“

JobStarts = 156

Machine = "b658ea5902.cern.ch“

Memory = 22500

RecentJobStarts = 0

SlotType = "Partitionable"

SlotTypeID = 1

SlotWeight = Cpus

Start = (StartJobs =?= true) && (RecentJobStarts < 5) && (SendCredential =?=
true)

StartJobs = true

TotalMemory = 22500

TotalSlotCpus = 8

TotalSlotDisk = 223032980.0

TotalSlotMemory = 22500

TotalSlots = 1

Job Startup
1. Machines periodically send their ClassAds to the Collector

2. The user submits their job to the Schedd

3. The Schedd informs the Collector about the job

4. The Negotiator queries the Collector about waiting jobs and
available machines

5. The Negotiator queries the Schedd about the job for the
requirements

6. The Negotiator matches the job with a machine

7. The Schedd contacts the machine and each other

5/12/2017 16

Job Submission

5/12/2017 17

Submit File

• Provides commands on how to execute the job

• Contains basic information about

• The executable

• The arguments

• Paths for the input and output files

• The number of the jobs in the queue

• The names of the jobs in the queue

5/12/2017 18

Condor Output And Logs
• These files are defined in the submit file

• Output
• The STDOUT of the command or script

• Error
• The STDERR of the command or script

• Log
• Information about job’s execution

• execution host

• the number of times this job has been submitted

• the exit value, etc

• Can use relative or absolute paths for all of them

• HTCondor will search for this directory
• So it should be already created

5/12/2017 19

Requirements
• In the submit file job requirements can be set about

• Operating System

• Number of CPUs

• Memory

• Specific machines

• Also provide ClassAdd attributes for this job
• Defined by using “+Name_Of_Variable”

• E.g +JobFlavour = espresso

• The job is submitted by executing:

condor_submit <name_of_submit_file>

5/12/2017 20

Progress of job submission
• To follow the progress of the job, execute:

condor_wait path_to_log-file [job ID]

• This watches the job event log file
• Created with the log command within a submit description file

• Returns when one or more jobs from the log have completed or aborted

• It will wait forever for jobs to finish unless a shorter wait time is specified

condor_wait [-wait seconds] log-file [job ID]

5/12/2017
http://research.cs.wisc.edu/htcondor/ma

nual/current/condor_wait.html
21

Inspecting Queues
• The condor_q command queries the collector

• For information about the jobs in the queue

• Arguments can be used to filter the jobs of interest

• Possible filters
• cluster.process

• Matches jobs in the same cluster.process that are still in the queue

• owner
• Matches jobs that are in the queue and they belong to this owner

• -constraint expression
• Matches jobs that satisfy this ClassAd expression

5/12/2017 22

Example
-- Schedd: bigbird06.cern.ch : <128.142.194.67:9618?... @ 05/02/17 10:04:46

OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS

fprotops CMD: welcome.sh 5/2 10:04 _ - 1 8.0

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

5/12/2017 23

But which

are the

possible

status of the

jobs?

Job States

5/12/2017 24

Idle (I) • The job is waiting in the queue to be executed

Running (R) • The job is running

Completed (C) • The job is exited

Held (H) • Something is wrong with the submission file

• The user executed condor_hold <job_id>

Suspended (S) • The user executed condor_suspend

Removed (X) • The job has been removed by the user.

Investigating Failed Jobs

5/12/2017 25

Diagnostics With condor_q
• condor_q displays the current jobs in the queue

• To see the ClassAd of a specific Job Id, execute:

condor_q –l <JobId>

• A very useful option for debugging when a jo stays in idle state is:

condor_q –better <Job Id>

or

condor_q –analyze <Job Id>

• Both display the reason why a job is not running

• They perform an analysis with constraints, owner’s preferences about the machines, etc.

• It sometimes provides also suggestions about the solution of the problem

• For a more detailed analysis of complex requirements and the job ClassAd attributes, execute:

condor_q –better-analyze <Job Id>

5/12/2017 26

Investigating Jobs
• The reasons for Held jobs can be found with:

condor_q –hold <JobId>

• In the case where a machine is not accepting the job, execute:

condor_q -better –reverse <name of machine> <JobId>

• After the completion of the job condor_history can be used
• It displays the information of the complete jobs from the history files

• To display the ClassAd of a specific completed Job, execute:

condor_history –l <JobId>

5/12/2017 27

Diagnostics With condor_status

• condor_status queries the Collector asking for information about the machine

• Specifying the machine name as an argument
• Display the slots, their state and their activity

Name OpSys Arch State Activity LoadAv Mem ActvtyTime

slot1@b6c70d5f39.cern.ch LINUX X86_64 Owner Idle 0.500 10500 0+00:02:47

slot1_1@b6c70d5f39.cern.ch LINUX X86_64 Claimed Busy 0.000 2000 0+00:18:55

• To display the ClassAd of a specific machine, execute:

condor_status –l <name of the machine>

5/12/2017 28

Input and Output Files

5/12/2017 29

Input Files
• Only the executable is transferred

• To use other files the File Transfer Mechanism is required

• Input files are defined in the submit file by adding:

transfer_input_files= path

• The path can be absolute or relative

• Multiple files can be specified using comma separation

5/12/2017 30

Output Files
• Files created or modified during job execution will be transferred back

• The number of output files transferred can be filtered adding in the
submit file:

transfer_output_files= “name_of_file”

• This will search for the file in the scratch directory of the executing
machine

• Multiple files can be specified using comma separation

• Note that this command is not related to the error, output and log files

5/12/2017 31

Spooling Files
• Another way to filter the number of output files is by using the spool

option

condor_submit –spool <name of submit file>

• The files are stored in the schedd’s spool directory after the
completion of the job.

• To transfer all or some of them back to the submit, execute:

condor_transfer_data <name of User> || <JobId>

• This acts upon all files including the error, log and output files

5/12/2017 32

Exercises

• These will help you to understand HTCondor

• And how we can use it correctly

Let’s play with HTCondor!!

http://cern.ch/htcondor

5/12/2017 33

http://batchdocs.web.cern.ch/batchdocs/tutorial/introduction.html
http://batchdocs.web.cern.ch/batchdocs/tutorial/introduction.html

