

B. Auchmann (CERN/PSI)

The LBNL CCT Program

See also: the US-MDP CCT Program Review

https://conferences.lbl.gov/event/88/

LBNL/MDP CCT Program Up to Now

• CCT1

- 2.5 T short-sample dipole
- 50 mm clear bore
- 8 strd. NbTi cable (0.65 mm SSC Outer)
- not impregnated
- 11/2013: tested up to 2.5 T

CCT2

- 5.3 T short-sample dipole
- 90 mm clear bore
- 23 strd. NbTi cable (0.8 mm SSC Inner)
- epoxy impregnated
- 5/2015: tested up to 4.7 T

CCT3

- 10.0 T short-sample dipole
- 90 mm clear bore
- 23 strd. Nb3Sn cable
 (0.8 mm OST 54/61)
- 3/2016: tested up to 7.4 T
- Suspect Conductor damage as possible cause of current limit

Source: D. Arbelaez (LBNL)

CCT₃ Results

- 56 current extractions conducted; 30 were natural quenches and the rest was triggered by instabilities / flux jumps
- The highest quench current was 13147 A, yielding 7.4 T dipole field in the bore and 8.3 T at the conductor

The absolute majority of quenches occurred within the first four turns of the inner layer (A23),

counting from the lead end.

CCT3 reached 74% of short sample current after 28 quenches

Unusual "inverse" ramp-rate dependence of quench current

Quench #2, acoustic localization

Q1

Ouench

Source: M. Marchevsky (LBNL)

LBNL/MDP CCT 2-Layer Program

Source: D. Arbelaez (LBNL)

LBNL/MDP: Beyond 2-Layer Magnets

Source: MDP

Beyond FCC Specs

 The future of high field magnets will depend on a structure that significantly reduces conductor stress.

	mat.	I0-ss (A)	Bcond
Lay1,2	Bi2212	10788	19.49
Lay3,4	Nb3Sn	10788	16.75
Lay5,6	Nb3Sn	10788	15.58

Bore field 19.33

Fields with iron in 2D tosca

LBNL/MDP CCT Experience

CCT3 alleged cable damage → increase in groove width.

CCT4 mandrel distortion and assembly problems \rightarrow increase layer-2 ID.

LBNL/MDP CCT Experience

Cable filled with solder rather than silicon for improved leak tightness.

Cable filled with solder

Fewer instrumentation wires through use of PCB V-taps.

Flexible PCB Voltage Tap

Flexible PCB Voltage Taps **Exiting Magnet**

Number of Instrumentation ports have been reduced

Similarities and Differences with LBNL Program

- Similarities and direct input:
 - Former material.
 - Cable, heat treatment
 - Channel dimensions, assembly gaps.
 - Mold-released layers.
 - NHMFL Mix 61 resin (as CCT5).
 - Possibly individual-layer impregnation and assembly options.
 - 3-D mechanical-modeling techniques.
 - Review of technical design by LBNL
 Engineer Ray Hafalia.
 - Use of extensive foto documentation,
 LBNL drawings, skype consultancy, etc.

- Complementary PSI topics:
 - Mica insulation.
 - Inductive-compensation wire.
 - Spar thickness.
 - Thin Al protective shell and external structure.
 - CD2 inclined channels.
 - Study of alternative manufacturing processes.

