

G. Montenero¹, B. Auchmann^{1,2}, and G. Rolando²
1) Paul Scherrer Institut
2) CERN

2D Sensitivity Study and Critical Tolerances of CD1 Magnet

26 June 2017

- 2D Mechanical modelling of CD1 dipole with ANSYS
- Design's objectives
- Baseline Design (+ excursus on CD2)
- Nominal Design vs. Material Properties
- Mechanical tolerances
- Parametric Study
- Conclusions

- 2D Mechanical modelling of CD1 dipole with ANSYS
- Design's objectives
- Baseline Design (+ excursus on CD2)
- Nominal Design vs. Material Properties
- Mechanical tolerances
- Parametric Study
- Conclusions

2D Mechanical modelling Setup of the numerical simulations (ANSYS)

The simulation is divided in 5 load steps:

- 1. Vertical bladders inflation (max 40 MPa pressure) and vertical keys insertion
- Vertical bladders deflation and horizontal bladder inflation (max 40 MPa pressure) with horizontal keys insertion
- 3. Horizontal bladders deflation-> assembly at room temperature
- 4. Cool down of the assembly to 1.9 K
- 5. Operation->Lorenz forces acting on the conductor according to short sample limit (1.9 K, 12 T)

Summary

- 2D Mechanical modelling of CD1 dipole with ANSYS
- Design's objectives
- Baseline Design (+ excursus on CD2)
- Nominal Design vs. Material Properties
- Mechanical tolerances
- Parametric Study
- Conclusions

Design's Objectives

What we care the most

- Limit the maximum stress on the conductor
- Keep the maximum stress of the mandrel below 0.2% yield stress

Material	Stress limit (MPa)		
	293 K	4.2 K	
Coil	130	130	
Al-Bronze	250	400	

Guarantee:

- pad/pad contact interface
- ii. Extra margins for steel pads configuration (using in the simulations Lorenz force maps associated to ultimate load (12 T, I_{ss} =20 kA at 1.9 K))

For the other materials of the assembly

- Aluminum for external and coil assembly shells (Al 7075)
- Ferromagnetic Iron yoke
- Steel for the pads (316LN)

Material	Stress limit (MPa)		
	293 K	4.2 K	
Al 7075	480	690	
Ferromagnetic Iron	180	720	
Austenitic steel 316LN	350	1050	

- 2D Mechanical modelling of CD1 dipole with ANSYS
- Design's objectives
- Baseline Design (+ excursus on CD2)
- The Design vs. Material Properties
- Mechanical tolerances
- Parametric Study
- Conclusions

Vert. bladder operation

Hor. bladder operation

Assembly - room temp.

Cool down 1.9 K

Operation at short sample limit (1.9 K, 12 T)

Room temp. steps (σ_θ - Azimuthal)

The Coil

Vert. bladder operation

Cable $\sigma_{\theta} = [-46.4, 25.7]$ MPa Cable $\sigma_{v}^{max} = 45.6$ MPa

Hor. bladder operation

Cable σ_{θ} = [-12.1, 1.1] MPa

Cable $\sigma_v^{\text{max}} = 11.6 \text{ MPa}$

Assembly - room temp.

Cable σ_{θ} = [-21.5, 10.5] MPa

Cable $\sigma_v^{\text{max}} = 19.8 \text{ MPa}$

Cool down 1.9 K

Cable σ_{θ} = [-55.7, 57.7] MPa

Cable $\sigma_{y}^{\text{max}} = 66.4.5 \text{ MPa}$

Operation at short sample limit (1.9 K, 12 T)

Cable σ_{θ} = [-87.1, 94.6] MPa

Cable $\sigma_{v}^{\text{max}} = 101 \text{ MPa}$

Room temp. steps

The Former

Vert. bladder operation

Former σ_{θ} = [-110.6, 105.0] MPa Former σ_{v}^{max} = 110.6 MPa

Hor. bladder operation

Former σ_{θ} = [- 53.4, 3.0] MPa Former σ_{v}^{max} = 53.4 MPa

Assembly - room temp.

Former σ_{θ} = [-66.2, 13.7] MPa Former σ_{v}^{max} = 65.9 MPa

Cool down 1.9 K

Cool down and operation steps $(\sigma_{\theta}$ - Azimuthal)

Former $\sigma_{\theta} = [-185.2, 108]$ MPa Former $\sigma_{v}^{max} = 184.8$ MPa

Operation at short sample limit (1.9 K, 12 T)

Former $\sigma_{\theta} = [-224.0, 273.0]$ MPa Former $\sigma_{v}^{max} = 271.6$ MPa

Room temp. steps

The Protective Coil Pack Shell

Vert. bladder operation

Hor. bladder operation

Assembly - room temp.

Prot. Shell σ_v^{max} = 27.4 MPa

Prot. Shell $\sigma_v^{\text{max}} = 14.6 \text{ MPa}$

Prot. Shell $\sigma_v^{\text{max}} = 16.0 \text{ MPa}$

Cool down 1.9 K

Operation at short sample limit (1.9 K, 12 T)

Prot. Shell $\sigma_{v}^{max} = 91.0 \text{ MPa}$

Prot. Shell $\sigma_{v}^{max} = 133.5 \text{ MPa}$

Page 16

The Steel Pads

Vert. bladder operation

Pads IR σ_v^{max} = 165.5 MPa

Hor. bladder operation

Pads IR $\sigma_v^{max} = 48.0 \text{ MPa}$

Assembly - room temp.

Pads IR σ_v^{max} = 80.6 MPa

Cool down 1.9 K

Cool down and operation steps

Pads IR σ_v^{max} = 316.3 MPa

Operation at short sample limit (1.9 K, 12 T)

Pads IR $\sigma_v^{max} = 161.0 \text{ MPa}$

The Iron Yoke

Vert. bladder operation

Yoke $\sigma_v^{\text{max}} > 180 \text{ MPa}$

Hor. bladder operation

Yoke σ_v^{max} = 54.5 MPa

Assembly - room temp.

Yoke σ_v^{max} = 105.0 MPa

Cool down 1.9 K

Cool down and operation steps

Yoke σ_v^{max} = 355.0 MPa

Operation at short sample limit (1.9 K, 12 T)

Yoke σ_v^{max} = 389.0 MPa

The Support Shell

Vert. bladder operation

Hor. bladder operation

Assembly - room temp.

Shell σ_v^{max} = 23.9 MPa

Shell σ_v^{max} = 116.3 MPa

Shell σ_v^{max} = 69.8 MPa

Cool down 1.9 K

Shell $\sigma_{v}^{\text{max}} = 179.0 \text{ MPa}$

Operation at short sample limit

(1.9 K, 12 T)

Shell σ_{v}^{max} = 208.0 MPa

Former Displacement

Radial displacement difference of the former between cool down and short sample load steps

- The arrow indicates the radial movement direction from cool down to operation on X and Y axes
- Along Y axes the coil pack squeeze of roughly of 180 μ m
- Along X axes the coil pack expand of roughly of \sim 140 μ m

- 2D Mechanical modelling of CD1 dipole with ANSYS
- Design's objectives
- Baseline Design (+Excursus on CD2)
- The Design vs. Material Properties
- Mechanical tolerances
- Parametric Study
- Conclusions

CD2 mechanical structure

The CD2 design:

- 1. Same Layer-2 OD =122 mm of CD1
- Inclined cable channels
- 3. Same Bladder and Key structure of CD1
- 4. 2D Simulations -> 5 steps (as for CD1)and same B&K config.
 - Operation->Lorenz forces acting on the conductor according to test condition (4.2 K, 10.5 T), limited by the test station I_{max}=22 kA

Vert. bladder operation

Hor. bladder operation

Assembly - room temp.

Cool down 4.2 K

Operation (4.2 K, 10.5 T)

Room temp. steps (σ_θ - Azimuthal)

CD2- The Coil

Vert. bladder operation

Cable σ_{θ} = [- 45.2, 22.3] MPa Cable σ_{v}^{max} = 46.2 MPa

Hor. bladder operation

Cable σ_{θ} = [-21.1, 11.1] MPa

Cable σ_v^{max} = 20.8 MPa

Assembly - room temp.

Cable σ_{θ} = [-33.8, 9.8] MPa

Cable σ_v^{max} = 33.0 MPa

Cool down 1.9 K

Cable σ_{θ} = [-109.0, 50.3] MPa

Cable $\sigma_v^{\text{max}} = 102.0 \text{ MPa}$

Operation at short sample limit (1.9 K, 12 T)

Cable σ_{θ} = [-70.5, 44.9] MPa

Cable $\sigma_{v}^{max} = 72.4 \text{ MPa}$

Room temp. steps (σ_θ - Azimuthal)

CD2-The Former

Vert. bladder operation

Former σ_{θ} = [-185.0, 52.5] MPa Former σ_{v}^{max} = 185 MPa

Hor. bladder operation

Former σ_{θ} = [- 107.0, 12.5] MPa Former σ_{v}^{max} = 100 MPa

Assembly - room temp.

Former σ_{θ} = [-164.0, 50.5] MPa Former σ_{v}^{max} = 158 MPa

Cool down 1.9 K

Former σ_{θ} = [-355.0, 248.0]MPa Former σ_{v}^{max} = 340 MPa

Operation at short sample limit

(1.9 K, 12 T)

Former $\sigma_{\theta} = [-174.0, 167.0]$ MPa Former $\sigma_{v}^{max} = 175.0$ MPa

- 2D Mechanical modelling of CD1 dipole with ANSYS
- Design's objectives
- Baseline Design
- Nominal Design vs. Material Properties
- Mechanical tolerances
- Parametric Study
- Conclusions

Pads: Steel vs. Iron

Von Mises (σ_v) maximum stresses

cable and former for the 5 load steps

Why steel instead of iron

- Thermal contraction of steel higher than iron
- Thermal contraction of steel much closer to the one for the coil pack
- For the iron pads, after cool down the differential thermal contraction gives a smaller value of prestress leading to higher maximum stress at operating conditions

Conductor's **Mechanical Properties**

Von Mises (σ_v) maximum stresses cable and former for the 5 load steps

Mechanical Properties for comparison

Used for simulations

			_	
Cond. Prop. 1		Cond. F		
E (GPa)		E (G		
4.2 K		293 K	Ī	
EX=30		EX=54	Ī	
EY25		EY=44	Ī	
GXY=21		GXY=21		
	4.2 K EX=30 EY25	4.2 K EX=30 EY25	GPa) E (G) 4.2 K 293 K EX=30 EX=54 EY25 EY=44	

Cond. Prop. 2		Cond. Prop. 3		
E (G	iPa)	E (GPa)		
293 K	4.2 K	293 K	4.2 K	
EX=54	EX=54	EX=14	EX=14	
EY=44	EY=44	EY=7.74	EY=7.7	
GXY=21	GXY=21	GXY=21	GXY=2	

The only remarkable differences are

- 7.7 MPa higher peak stress for Cond. Prop.2 on the cable at short sample operating condition
- 85 MPa higher peak stress for Cond. Prop.3 on the former at short sample operating condition

EX=14

EY=7.74

GXY=21

- 2D Mechanical modelling of CD1 dipole with ANSYS
- Design's objectives
- Baseline Design
- The Design vs. Material Properties
- Mechanical tolerances
- Parametric Study
- Conclusions

Mechanical Tolerances

Tolerances of interest:

- Mismatch between radii of coil and pads assemblies (OR1-IR2) ≠ 0 (coil/pad radial)
- Horizontal key tolerance (hor. key)
- Vertical key tolerance (**vert. key**)
- Pad/pad interface contact (pad/pad cont.)

Use ANSYS contact technology

- (coil/pad radial) < 0 → gap
- (coil/pad radial) > 0 → compression
- (hor. or vert. key) $< 0 \rightarrow$ undersize key
- **(hor. or vert. key)** > $0 \rightarrow$ oversize key
- (pad/pad cont.) $< 0 \rightarrow$ undersize pads
- (pad/pad cont.) > $0 \rightarrow$ oversize pads

Horizontal and vertical keys

horizontal and vertical bladders

- 2D Mechanical modelling of CD1 dipole with ANSYS
- Design's objectives
- Baseline Design
- The Design vs. Material Properties
- Mechanical tolerances
- Parametric Study
- Conclusions

Parametric study and design's objective

- Use a ± 100 μm tolerance on the parameters of interest with a 50 μm step (five values for each parameter, reasonable computation time)
- Nominal values of the parameters
 - coil/pad radial gap equals to 0.0 mm
 - hor. key interference of 0.3 mm
 - vert. key interference of 0.0 mm
 - pad/pad contact gap equal to 0.0 mm

For any combination of the parameters tolerances:

- Maximum stress on the conductor below 130 MPa
- Maximum stress on the former below 250 MPa at room temp and 400 MPa. at 1.9 K
- The pad/pad interface has to be in contact during all the operating conditions.
- If any of the maximum allowed stresses on the conductor and on the former are exceeded, the parameters combination is considered to be harmful for the magnet operation
- A pad/pad interface not in contact during all the steps

Sensitivity to Parameters One-factor-at-the-time

One-factor-at-the-time (quick check of important parameters)

- Average the stress values over all the simulations runs for a given param. value and load step
- Display the average as a function of the load step and param. value
- · Color map identify the spread on the results

- Coil/pad radial mismatch has the larger influence on maximum stresses
- Horizontal and vertical keys tolerances have a minor influence
- Pad/pad contact tolerance can play a rule

We can restrict ourselves to the interactions between two parameters

Sensitivity to Parameters Two Parameters Analysis

0.3

hor. key

Varying two parameters while keeping the others at their nominal value:

- All good
- Pad/pad interface
- Stresses values exceeded

-0.1

FIRST ROW

- ± 100 μm tolerance on the coil/pad radial mismatch can not be accepted (required below 50 μm);
- 2. A \pm 50 μ m tolerance on the hor. and vert. key must be considered
- Better to leave a small gap between coil and pad (≤ 50 μm)

- 1. Any combination of the other parameters gives a safe scenario
- Using tighter tolerances help to guarantee pad/pad contact

0.1

A Glance to the Overall Results

Results from full parametric study

- Within the requested limits
- Pad/pad interface contact not guaranteed (at room temp.)
- Stresses values exceeded the design limits
- Nominal design

Need to verify that tolerances from two parameters analysis allow to stay within the stress limits!

Defining Tolerances

Target tolerances (according to the procurement of mechanical parts)

- coil/pad radial \rightarrow [-40, 0] μ m
- hor. key \rightarrow ± 50 µm
- vert. key → ± 50 µm
- pad/pad contact → ± 25 µm

4 simulations runs above limit -by a small amount- out of 625 simulations (5 values per tolerance):

coil/pad radial (μm)	hor. Key (μm)	vert.key (μm)	pad/pad contact(μm)	Cable (Mpa)	Former (Mpa)
-40	25	25	25	130.46	_
-40	25	50	13	130.115	
-40	27.5	50	13	132.6	407.85
-40	27.5	50	25	131.23	402.36

THIS IS NOT GOING TO BE A PROBLEM: WE HAVE EXTRA MARGINS!

Results from parametric study with target tolerances

- 2D Mechanical modelling of CD1 dipole with ANSYS
- Design's objectives
- Baseline Design
- The Design vs. Material Properties
- Mechanical tolerances
- Parametric Study
- Conclusions

- A parametric study on the 2D model of CD1 magnet is carried out
- Critical tolerances a parameter sensitivity is investigated
- Tolerances for technical design are defined
- Numerical Results from 2D simulations show the feasibility of the CD1 design

CD1 - The Coil Radial Stress

Vert. bladder operation

Cable $\sigma_r = [-46.6, 29.0]$ MPa

Hor. bladder operation

Cable $\sigma_r = [-10.7, 16.6]$ MPa

Assembly - room temp.

Cable $\sigma_r = [-21.1, 5.3]$ MPa

Cool down 1.9 K

Cool down and operation steps (σ_r - Radial)

Cable $\sigma_r = [-63.7, 54.6]$ MPa

Operation at short sample limit

(1.9 K, 12 T)

Cable $\sigma_r = [-104.0, 36.2]$ MPa

Room temp. steps (σ, - Radial)

CD1 - The Former Radial Stress

Vert. bladder operation

Former σ_r = [-50.2, 102.0] MPa

Hor. bladder operation

Former $\sigma_r = [-20.2, 30.6]$ MPa

Assembly - room temp.

Former $\sigma_r = [-16.9, 28.8]$ MPa

Cool down 1.9 K

Former $\sigma_r = [-86.4, 78.7]$ MPa

Operation at short sample limit

(1.9 K, 12 T)

Former $\sigma_r = [-204.0, 174.0]$ MPa

CD2 - The Coil Radial Stress

Vert. bladder operation

Cable $\sigma_r = [-26.5, 24.7]$ MPa

Hor. bladder operation

Cable $\sigma_r = [-20.5, 10.2]$ MPa

Assembly - room temp.

Cable $\sigma_r = [-22.2, 8.7]$ MPa

Cool down 4.2 K

Cool down and operation steps (σ_r - Radial)

Cable $\sigma_r = [-76.5, 43.6]$ MPa

Operation at short sample limit (4.2 K, 10.5 T)

Cable $\sigma_r = [-79.0, 47.3]$ MPa

Room temp. steps

CD2 - The Former Radial Stress

Vert. bladder operation

Cable $\sigma_r = [-57.7, 66.0]$ MPa

Hor. bladder operation

Cable $\sigma_r = [-36.3, 40.8]$ MPa

Assembly - room temp.

Cable $\sigma_r = [-32.2, 44.6]$ MPa

Cool down 4.2 K

Cool down and operation steps $(\sigma_r - Radial)$

Cable $\sigma_r = [-95.9, 143.0]$ MPa

Operation at short sample limit (4.2 K, 10.5 T)

Cable $\sigma_r = [-169.0, 62.6]$ MPa