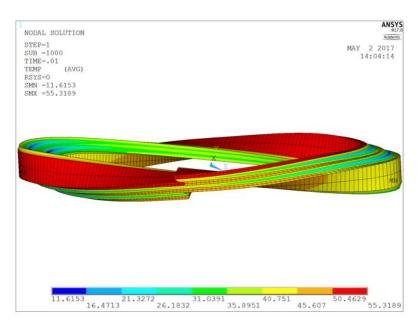
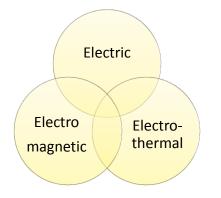

- B. Auchmann (CERN/PSI), R. Felder (PSI), J. Gao (PSI), G. Montenero (PSI)
- G. Rolando (CERN), S. Sanfilippo (PSI), S. Sidorov (PSI)

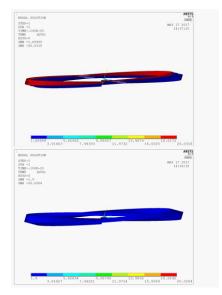
Technological Challenges, R&D Topics, and Infrastructure Plans

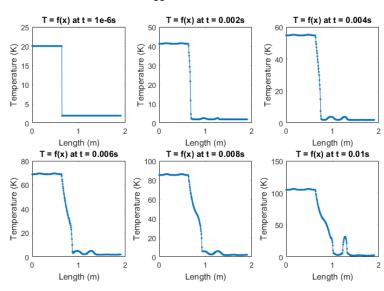

- Test and R&D Topics
 - Quench Protection
 - Smart Insulation
 - Former Manufacturing
 - Former-Material Characterization
 - Winding and Reaction Tests
 - Instrumentation and Soldering Trials
 - Impregnation Tests
 - Structure Assembly
- Infrastructure Plans



Quench Simulation

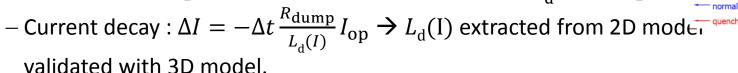
- Tool : Mecanical APDL (ANSYS Parametric Design Language)
 - A scripting language to build models & analyses
 - Features : design optimization & adaptive meshing

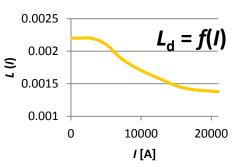

```
102 | Open the output file:
193 /DELETE, centroids, dat
194 *CFOPEN, centroids, dat
195 *VWRITE,elnb
196 (F6.0)
197 | LOOPING OVER ELEMENTS
     *DO,q,emin,emax,1
       I Obtain the centroid location:
       xc = CENTRX(enum)
       yc = CENTRY(enum)
       zc = MOD(CENTRZ(erum) +100*pitch,pitch) +pitch/2
       I Write the data to the file:
       *VWRITE,xc,',',yc,',',zc
       (e20.5,a3,e20.5,a3,e20.5)
       *GET, enum, ELEM, ENUM, NXTH
267 *ENDDO
211 | IMPORT ELEMENT DATA
     /INQUIRE, numlines, LINES, eldata, dat
213 *DEL,eltab., NOPR
214 *DIM, eltab, TABLE, numlines-1,8
215 *TREAD, eltab, eldata, dat
     I Move data to numerical Array
    *DEL, elarr, , NOPR
     *DIM.elarr.ARRAY.numlines.9
     I Shift down and right
     *00, j, 0, 8, 1
      *vfun,elarr(1,j+1),copy,eltab(0,j)
```



Quench Simulation

- Model I: Helical Propagation
 - Determination of propagation velocity per layer and per excitation level.
 - Quantification of detection problem.
 - CD1 Layer1 3-turn model results, working at I_{ss} = 20kA, IC : T = 20K for 1st turn




CD1 Quench Protection

- The energy is extracted from the magnet and dissipated in a dump resistor.
- To get an idea of time margin:
 - MIITs calculation gives the limit:

$$\text{MIIT}s = 10^{-6} \left[I_{\text{op}}^2 (\Delta t_{\text{det}} + \Delta t_{\text{valid}} + \Delta t_{\text{switch}}) + \int_{t_{\text{d}}}^{\infty} I(t)^2 dt \right]$$

– To ensure T_{max} < 300 K → MIITs < 9.22 (cf. Excel Sheet):

At working point T = 4.2 K, when I $_{\rm op}$ = 18 kA, $\Delta t_{det} + \Delta t_{valid} + \Delta t_{switch} < 28.5~ms$ when I $_{\rm op}$ = 15.48 kA, $\Delta t_{det} + \Delta t_{valid} + \Delta t_{switch} < 38.5~ms$ when I $_{\rm op}$ = 12 kA, $\Delta t_{det} + \Delta t_{valid} + \Delta t_{switch} < 64~ms$

CD1 Quench Protection

Due to the detection noise (flux jumps) of Nb₃Sn, a higher voltage threshold shall

be used in case of quench \rightarrow No need $\Delta t_{\mathrm{valid}}$

Suppose $\Delta t_{\rm switch} \approx 2$ ms, then according to MIITs

When $I_{\rm op}$ = 18 kA, $\Delta t_{\rm det}$ < 26.5 ms

When $I_{\rm op}$ = 15.48 kA, $\Delta t_{\rm det}$ < 36.5 ms

When $I_{\rm op}$ = 12 kA, $\Delta t_{\rm det}$ < 62 ms

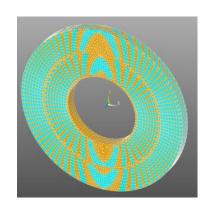

MAPDL simulation predicts, for a voltage threshold ~ 500 mV :

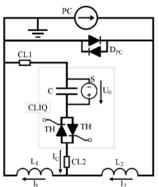
When $I_{\rm op}$ = 18 kA, $\Delta t_{\rm det} \approx 3.8 \, {\rm ms}$

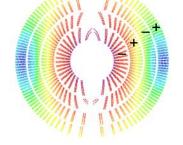
When $I_{\rm op}$ = 15.48 kA, $\Delta t_{\rm det} \approx 12 \ {\rm ms}$

When $I_{\rm op}$ = 12 kA, $\Delta t_{\rm det} \approx 26.9 \ {\rm ms}$

→ Good time margin → Protectable Magnet



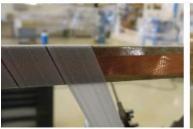

Cable w/o insul



MAPDL Quench Simulation with LBNL

- Next Simulation Goals:
 - Generation of slice model with continuous mesh for electro-thermal simulation.
 - With L. Brouwer (LBNL), creation of user-defined electrodynamic and thermal elements for cable-eddy current simulation and quench simulation, respectively.
 - Simulation of a CLIQ discharge in CD1 slice prior to its test.
 - Eventually, full CD1 quench simulation on cluster.




Courtesy: E. Ravaioli

Insulation

- Baseline: Copy-paste from 11-T insulation.
 - Mechanical reinforcement of frail cable edges via mica.
 - No particular worries about strainenhancement due to open mica C due to CCT stress management.
 - In contact with Jacky Mazet to coordinate requests and develop tooling for mica and co-wound wire (see next slide).
- Alternative: closed mica wrap (all 4 sides with overlap)
 - Use sleeve and do impregnation tests.

Smart Insulation

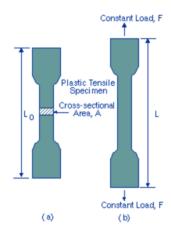
- Goal: Accelerate quench detection in CCT HFMs.
 - 1. Baseline: Co-wound copper wire for inductive compensation (see Feather 2, G. Kirby et al.).
 - 2. Co-wound copper wire terminated with diodes for inductive compensation and passive quench-back heater (see HL-LHC D2 corrector, G. Kirby et al.).
 - 3. Co-wound SC wire with series resistance shorting SC cable; apply stationary bias current (~1 A) for thermal quench detection (sudden current drop; see G. Montenero idea for HL-LHC SC link protection).
 - 4. Co-wound Rayleigh-scattering Interrogated Optical Fiber.
- Work with Jacky and firm to include wire in between mica and S2 braid.

Manufacturing Trials

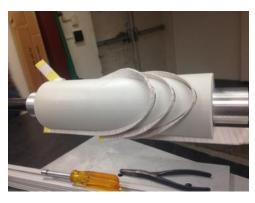
- Ongoing at Swiss (CuAl7Si2) and Dutch (CuAl10Fe5Ni5) companies.
- Baseline is CuAl7Si2 to avoid magnetic-field distortion.
- 5 turns per layer.
- CD1 IL and OL, followed by CD2 IL.

Manufacturability and Cost

- Collaboration with IWS Fraunhofer on fabrication of thin-lamination formers.
 - Laser weld-cutting.
 - Goal: improve scalability and cost.
- If proof-of-concept successful, we plan to apply for D/A/CH funding to develop a mature manufacturing technology.
- Potentially interesting for manufacturing of curved CCT formers.

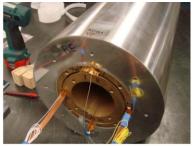


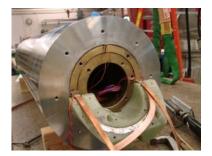
Al-Bronze Characterization

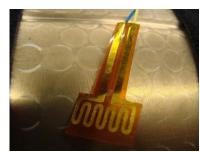

- Determine Al-bronze tensile strength post reaction at room temperature and in cryogenic conditions.
- Manufacture normed sample and ask CERN EN/MME for characterization (PSI team account).

Winding and Reaction Tests

- CD1 winding test with metal and 3-D printed test formers.
- CD2 winding test with metal test former and FNAL-supplied copper cable.
- CD1 test reaction with 5-turn Al-bronze test former. Determine cable elongation and verify channel dimensions. Validate clamping technique (below: copper wires and hose clamps).





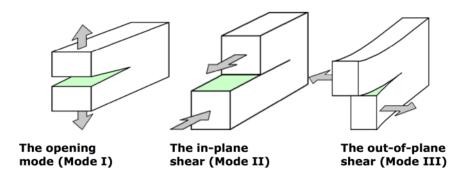

Instrumentation and Soldering Trials

- Learn from CERN and PSI:
 - Nb3Sn/Nb-Ti splices.
 - Nb-Ti/Nb-Ti joints.
 - PCB wiring.
 - Voltage taps.

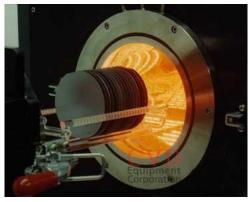
Impregnation Trials

- CD1 test impregnations with 3D printed formers (probably Duraform, following advice by Remy and Sebastien).
 - Set up impregnation process.
 - First trials, vacuum-bag impregnation of single layer.
 - Compare CTD 101K with NHMFL61.
 - Sleeve insulation with mica C and mica wrap.
 - Cut up samples to observe filling quality.

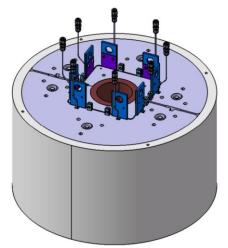
D. Markiewicz (NHMFL): "I cannot say strongly enough how different the NHMFL epoxies are from CTD101 in fracture toughness."



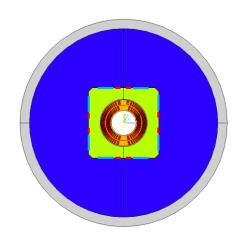
Metal-Resin Adhesion

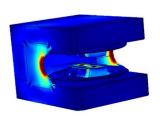

- R&D on improved metal-resin bonding strength.
- Determine effective primary to improve metal-resin adhesion.
- Test different metal surface conditions (sandblasting, vs. polishing).

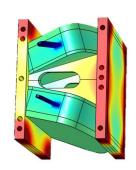
Former Coating


- Discuss SiOx chemical vapor deposition coating for enhanced and reaction-hard former insulation.
- Contact experts at PSI and ETHZ.
- Study consequences for resin adhesion.

Short Mechanical Model


- Mechanical model with dummy coil:
 - Set up mechanical measurement system.
 - Equip short model with dummy coil with strain gauges.
 - Validate structure vs. ANSYS model.
- Mechanical model with assembled 5-layer test formers:
 - Impregnate 5-layer test formers.
 - Load them in, both, vertical and horizontal position in the mechanical model.
 - Study cracking, delamination, etc.


- Test and R&D Topics
- Infrastructure Plans
 - Mechanical Measurements
 - Impregnation System
 - Reaction Furnace



Preface

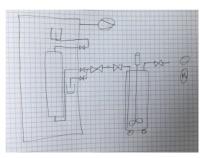
- PSI is currently involved in four different project involving Nb3Sn technology:
 - FCC Design Study CD1/2.
 - SLS 2.0 SuperBend magnet (Nb3Sn racetrack).
 - Superconducting gantry (tilted racetracks, with industry).
 - Racetracks for magnetization of bulk-HTS SC undulators.
- SC magnets for light sources and proton therapy are of strategic long-term interest for PSI.
- The FCC Design Study also serves to build up competence as well as infrastructure at PSI.
- This investment, in turn, can help HFM R&D for FCC.

Mechanical Measurements

- Invest in 16-channel HBM measurement system (same as CERN and LBNL)
- Strain gauges
- LVDTs
- Temperature sensors
- Quote received, ready to launch procurement.

Impregnation System

- Baseline:
 - Build mixer pot.
 - Heating plate with magnetic mixer.
- Alternative:
 - buy mixer with impeller and heating mats.
- Perform first trials directly in PSI heating chamber.

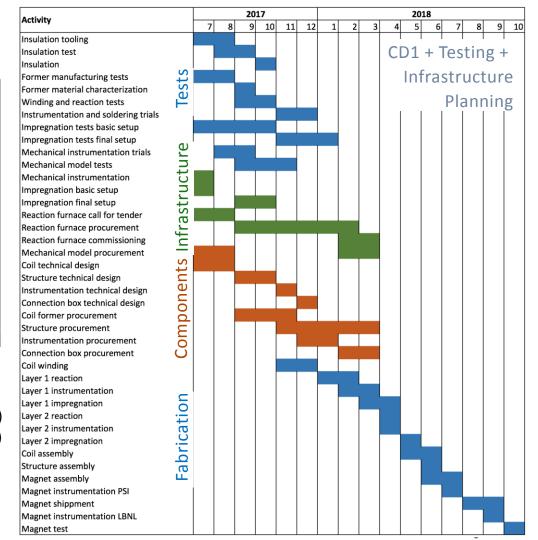

Skype consulting with Jim Swanson (LBNL).

Impregnation System

- In preparation of CD1 coil manufacturing, buy heaters and heat-regulation system.
- Procure a vacuum vessel (initial market survey completed).
- Procure vacuum system from PSI Vacuum group.

Reaction Furnace

- Invest in reaction furnace of adequate size for all foreseeable (next 4-5 years) projects.
- Operational volume: 250x250x1200 mm.
- Fulfilling slightly adjusted specs from CERN reaction furnaces (latest CERN spec dates from 2014).
- Initial market survey completed.



								_			
Activity	2017			2018			2019				
Conceptual Design											
Conductor CD1											
Insulation with Protection Feature											
Engineering Design starting from LBNL CCT4											
Mechanical model manufacturing											
Mechanical model testing											
Impregnation&reaction testing											
Structure manufacturing											
Former manufacturing incl. tests											
Coil manufacturing											
Magnet assembly											
Magnet test											
Conductor CD2											
Cabling and insulation											
Former manufacturing incl. tests											
Coil manufacturing											
Magnet assembly											
Magnet test											
FNAL insert assembly and test											

Team:

- Bernhard (cable, furnace procurement)
- Jiani (quench simulation and quench instrumentation)
- Giuseppe (FEA, mech. instrumentation, impregnation)
- Marco (3D EM FEA)
- Roland (instrumentation, impregnation, assembly)
- Serguei (tech. design, procurement, QA)

- Every step in the project is new for PSI and requires external support, training and testing.
- The schedule is packed and we need to defend PSI resources (Serguei and Roland) against competing PSI projects.
- PSI has approved funds to invest in infrastructure, pending the opinion of the review committee.
- Planning uncertainties/risks:
 - Reaction infrastructure may arrive late for the first CD1 layer(s), in which case we would seek support to react at CERN.
 - Coil fabrication schedule could change if both layers are impregnated together and/or coils are reacted at CERN.
 - CD2 component procurement must start before CD1 test results arrive.
- Additional info:
 - CD1 magnet testing will occur at LBNL (contrary to previous baseline which foresaw testing at CERN).