Theoretical overview and Global fit

Satoshi Mishima (KEK)

Workshop "Anomalies in b to sll and its implications" Hongo, University of Tokyo, May 11, 2017

Outline

1. Introduction

 R_K, R_K^* and angular observables in $B \to K^* \mu \mu$

2. Global fits

model-independent fits of NP contributions

only R_K, R_K^*

+ angular observables

3. Summary

1. Introduction

- $b \rightarrow s\ell^+\ell^-$: FCNC transitions; due to their suppression within the SM, they have a high sensitivity to potential NP contributions.
- In 2013, LHCb [1 fb-1] observed a 3.7 sigma discrepancy between the data and the SM in one bin for P5'.
- In 2015, LHCb [3 fb-1] confirmed it with a 3 sigma deviation in each of two bins.
- LHCb also observed a systematic deficit with respect to the SM predictions for the BRs of several decays, such as $B_s \rightarrow \phi \mu \mu$.
- In 2016, Belle confirmed the P5' anomaly.
- Recent ATLAS and CMS data show a good overall agreement with the LHCb results.

 $B^0
ightarrow K^{*0} \mu^+ \mu^-$

q^2 regions

$B \to K^*$ form factors

$$\begin{split} \langle \bar{K}^{*}(k,\lambda) | \bar{s}\gamma_{\mu}b | \bar{B}(p) \rangle &= \epsilon_{\mu\nu\rho\sigma} \epsilon_{\lambda}^{*\nu} p^{\rho} k^{\sigma} \frac{2}{m_{B} + m_{K^{*}}} V(q^{2}) \,, \\ \langle \bar{K}^{*}(k,\lambda) | \bar{s}\gamma_{\mu}\gamma_{5}b | \bar{B}(p) \rangle &= i(\epsilon_{\lambda}^{*} \cdot q) \, \frac{2m_{K^{*}}q_{\mu}}{q^{2}} A_{0}(q^{2}) + i(m_{B} + m_{K^{*}}) \left(\epsilon_{\lambda,\mu}^{*} - \frac{(\epsilon_{\lambda}^{*} \cdot q)q_{\mu}}{q^{2}} \right) A_{1}(q^{2}) \\ &- i(\epsilon_{\lambda}^{*} \cdot q) \left[\frac{(2p - q)_{\mu}}{m_{B} + m_{K^{*}}} - (m_{B} - m_{K^{*}}) \frac{q_{\mu}}{q^{2}} \right] A_{2}(q^{2}) \,, \\ q^{\nu} \langle \bar{K}^{*}(k,\lambda) | \bar{s}\sigma_{\mu\nu}b | \bar{B}(p) \rangle &= 2i\epsilon_{\mu\nu\rho\sigma}\epsilon_{\lambda}^{*\nu}p^{\rho}k^{\sigma} T_{1}(q^{2}) \,, \\ q^{\nu} \langle \bar{K}^{*}(k,\lambda) | \bar{s}\sigma_{\mu\nu}\gamma_{5}b | \bar{B}(p) \rangle &= \left[\epsilon_{\lambda,\mu}^{*}(m_{B}^{2} - m_{K^{*}}^{2}) - (\epsilon^{*} \cdot q)(2p - q)_{\mu} \right] T_{2}(q^{2}) \\ &+ (\epsilon^{*} \cdot q) \left[q_{\mu} - \frac{q^{2}}{m_{B}^{2} - m_{K^{*}}^{2}} \left(2p - q \right)_{\mu} \right] T_{3}(q^{2}) \,, \\ \langle \bar{K}^{*}(k,\lambda) = 0 | \bar{s}\gamma_{5}b | \bar{B}(p) \rangle &= -2i \, \frac{m_{K^{*}}(\epsilon^{*} \cdot q)}{m_{b} + m_{s}} A_{0}(q^{2}) \end{split}$$

In the heavy quark and low q2 limits,

$$\xi_{\perp}(q^2) = \frac{m_B}{m_B + m_{K^*}} V(q^2) = \frac{m_B + m_{K^*}}{2E} A_1(q^2) = T_1(q^2) = \frac{m_B}{2E} T_2(q^2) ,$$

$$\xi_{\parallel}(q^2) = \frac{m_{K^*}}{E} A_0(q^2) = \frac{m_B + m_{K^*}}{2E} A_1(q^2) - \frac{m_B - m_{K^*}}{m_B} A_2(q^2) = \frac{m_B}{2E} T_2(q^2) - T_3(q^2)$$

Satoshi Mishima (KEK) 🜔

only two independent form factors!

$B \rightarrow K^*$ form factors

Bharucha, Straub, Zwicky'2015

Optimized angular observables

$$P_{5}' = \frac{\Sigma_{5}}{2\sqrt{-\Sigma_{2s}\Sigma_{2c}}}, \qquad P_{6}' = -\frac{\Sigma_{7}}{2\sqrt{-\Sigma_{2s}\Sigma_{2c}}}, \qquad P_{8}' = -\frac{\Sigma_{8}}{\sqrt{-\Sigma_{2s}\Sigma_{2c}}}.$$

Kruger, Matias (05); Egede et al. (08); Descotes-Genon et al. (13)

Satoshi Mishima (KEK) 🜔

less sensitive to form factors

"optimal" in the heavy quark limit ignoring α_s corrections and long-distance hadronic contribution.

Optimized angular observables

$$P_1=rac{\Sigma_3}{2\Sigma_{2s}}, \hspace{1em} \Sigma_3=S_3$$

$$\Sigma_i \equiv rac{I_i + ar{I}_i}{2}$$

Satoshi Mishima (KEK) 🜔

Pi is insensitive to the choice of form factors.

Descotes-Genon et al., 1207.2753

Figure 11. Predictions in the SM and in the case of NP at the benchmark point b2 for P_1 (left) and S_3 (right). The yellow boxes are the SM predictions integrated in five 1 GeV^2 bins. The blue curve corresponds to the central values for the NP scenario. The green band is the total uncertainty considering the form factors of refs. [26, 28], while the gray band is the total uncertainty obtained using the form factors of ref. [27]. In the case of P_1 the gray band is barely visible.

9 /46

DHMV = Descotes-Genon, Hofer, Matias & Virto (2014)

$$C_9^{
m NP} < 0$$

$$O_9 = (ar{s} \gamma_\mu P_L b) (ar{\ell} \gamma^\mu \ell) \ ig| C_9^{ ext{NP}} / C_9^{ ext{SM}} ig| \sim 25\,\%$$

Possible interpretations

$$C_9^{\mathbf{NP}} < \mathbf{0} \qquad O_9 = (\bar{s}\gamma_\mu P_L b)(\bar{\ell}\gamma^\mu \ell)$$

J Hadronic contributions might mimic a short distance NP contribution in $C_{9\mu}$.

b

Underestimate of SM uncertainty from long-distance charm loops ?

$$O_2 = (ar b \gamma_\mu P_L c) (ar c \gamma^\mu P_L s)$$

LCSR estimate Khodjamirian et al. (2010)

Main problem for the P5' anomaly!!

P5' anomaly in $B \to K^* \mu^+ \mu^-$

DHMV vs.ASZB:

different inputs for form factors

different parameterizations of hadronic contributions and power-suppressed contributions

LFU ratios $R_{K^{(*)}}$

The Lepton Flavor Universality (LFU) ratios are very clean probes of NP:

$$R_{M}[q_{\min}^{2}, q_{\max}^{2}] = \frac{\int_{q_{\min}^{2}}^{q_{\max}^{2}} dq^{2} \frac{d\Gamma(B \to M\mu^{+}\mu^{-})}{dq^{2}}}{\int_{q_{\min}^{2}}^{q_{\max}^{2}} dq^{2} \frac{d\Gamma(B \to Me^{+}e^{-})}{dq^{2}}}$$

- very clean theoretically; hadronic uncertainties cancel to large extent in the ratio.
 Hiller & Kruger, hep-ph/0310219
- potential to discriminate among NP models.

Hiller & Schmaltz, 1411.4773

The SM values of $R_{K^{(*)}}$ are expected to deviate from unity only at the percent level, considering QED logarithmic corrections.
Bordone, Isidori & Pattori, 1605.07633

Sources of LFU violation in the SM

masses of the charged leptons

relevant only for a very small di-lepton invariant mass squared close to $q^2 \sim 4 m_\ell^2$

- their interactions with the Higgs
- (negligibly small neutrino masses)
 - tiny effects in rare B decays
- Hadronic contributions cannot generate LFU violation.

LFUV data from Belle

Belle reported data for LFUV observables, but not yet statistically significant.

Less sensitive to hadronic contributions.

 \checkmark LFUV observables $R_{K^{(*)}}$ and $Q_{4,5} = P_{4,5}^{\prime\mu} - P_{4,5}^{\prime e}$

less sensitive to hadronic contributions

theoretically clean!

Angular observables, such as P5'

suffer from hadronic contributions dirty!

2. Global fits

Relevant operators

$$C_{10}(\mu_b)pprox -4.2 \quad C_{10}'(\mu_b)pprox 0$$

Operators with chiral lepton currents:

$${\cal O}^\ell_{AB} = (ar s \gamma^\mu P_A b) (ar \ell \gamma_\mu P_B \ell) \,, \qquad A,B = L,R$$

$$\bigcirc C_{LL}^{\rm SM} = C_9^{\rm SM} - C_{10}^{\rm SM} \approx 8.4$$

Patterns of NP in $R_{K^{(*)}}$

- Solution The dipole operator $O_{7\gamma}$ and four-quark operators cannot lead to LFUV.
- **Solution** The (pseudo-)scalar operators are strongly constrained by $B(B_s o \ell \ell)$. Alonso, Grinstein & Martin Camalich, 1407.7044 Altmannshofer, Niehoff & Straub, 1702.05498

$$\checkmark$$
 NP in $C_9^{(\prime)\mu}$ and $C_{10}^{(\prime)\mu}$

The nodes indicate steps of $\Delta C_i^\mu = +0.5$.

the presence of chirality flipped contributions

 $R_K \not\approx R_{K^*}$

1.4 1.2 1.0 کے C'_9 C₉ SM 0.8 $\dot{C_{1'}}$ C₁₀ 0.6 0.8 1.2 1.4 1.0 0.6 R_{κ}

> Geng, Grinstein, Jager, Martin Camalich, Ren & Shi, 1704.05446 Satoshi Mishima (KEK)

Patterns of NP in $R_{K^{(*)}}$

 $B \to K\ell\ell$ $\frac{d\Gamma_{K}}{dq^{2}} = \mathcal{N}_{K}|\vec{k}|^{3}f_{+}(q^{2})^{2} \left(\left| C_{10}^{\ell} + C_{10}^{\prime \ell} \right|^{2} + \left| C_{9}^{\ell} + C_{9}^{\prime \ell} + 2\frac{m_{b}}{m_{B} + m_{K}} C_{7} \frac{f_{T}(q^{2})}{f_{+}(q^{2})} - 8\pi^{2}h_{K} \right|^{2} \right)$ $+ \mathcal{O}(\frac{m_{\ell}^{4}}{q^{4}}) + \frac{m_{\ell}^{2}}{m_{B}^{2}} \times O(\alpha_{s}, \frac{q^{2}}{m_{B}^{2}} \times \frac{\Lambda}{m_{b}}),$ $f_{i}, V_{i}, T_{i} : \text{ form factors}$ $h_{i} : \text{ hadronic contributions}$ $\frac{d\Gamma_{0}}{dq^{2}} = \mathcal{N}_{K^{*}0}|\vec{k}|^{3}V_{0}(q^{2})^{2} \left(\left| C_{10}^{\ell} - C_{10}^{\prime \prime \prime} \right|^{2} + \left| C_{9}^{\ell} - C_{9}^{\prime \prime} + \frac{2m_{b}}{m_{B}}C_{7}\frac{T_{0}(q^{2})}{V_{0}(q^{2})} - 8\pi^{2}h_{K^{*}0} \right|^{2} \right) + \mathcal{O}\left(\frac{m_{\ell}^{2}}{q^{2}}\right),$ $\frac{d\Gamma_{1}}{dq^{2}} = \mathcal{N}_{K^{*}\perp}|\vec{k}|q^{2}V_{-}(q^{2})^{2} \left(\left| C_{10}^{\ell} \right|^{2} + \left| C_{9}^{\prime \prime} \right|^{2} + \left| C_{10}^{\prime \prime} \right|^{2} + \left| C_{9}^{\ell} + \frac{2m_{b}m_{B}}{q^{2}}C_{7}\frac{T_{-}(q^{2})}{V_{-}(q^{2})} - 8\pi^{2}h_{K^{*}\perp} \right|^{2} \right) + \mathcal{O}\left(\frac{m_{\ell}^{2}}{q^{2}}\right) + \mathcal{O}\left(\frac{\Lambda}{m_{b}}\right)$

I $V_+(q^2)$ and $T_+(q^2)$ are power suppressed.

 $A_0:A_-:A_+=1:\Lambda/m_b:\Lambda^2/m_b^2$ in the heavy quark limit

- selative minus signs due to the different parities.
- Chirality flipped contributions increase the decay rate in the transverse polarization.

Fit of $R_{K^{(*)}}$

● The fit favors NP in the directions of $\delta C_9^{\mu} = -\delta C_{10}^{\mu}$.

Solution NP in electron couplings produces very similar results with $\delta C_i^e \approx -\delta C_i^\mu$.

Fit results

Coeff.	best fit	1σ	2σ	pull
C_9^{μ}	-1.59	[-2.15, -1.13]	[-2.90, -0.73]	B] 4.2σ
C^{μ}_{10}	+1.23	[+0.90, +1.60]	[+0.60, +2.04]	4] 4.3σ
C_9^e	+1.58	[+1.17, +2.03]	[+0.79, +2.53]	B] 4.4σ
C^e_{10}	-1.30	[-1.68, -0.95]	[-2.12, -0.64]	4] 4.4σ
$C_{9}^{\mu} = -C_{10}^{\mu}$	-0.64	[-0.81, -0.48]	[-1.00, -0.32]	2] 4.2σ
$C_9^e = -C_{10}^e$	+0.78	[+0.56, +1.02]	[+0.37, +1.31]	.] 4.3σ
$C_9^{\prime\mu}$	-0.00	[-0.26, +0.25]	[-0.52, +0.51]] 0.0σ
$C_{10}^{\prime \ \mu}$	+0.02	[-0.22, +0.26]	[-0.45, +0.49]	$0] 0.1\sigma$
$C_9'^{e}$	+0.01	[-0.27, +0.31]	[-0.55, +0.62]	$2] 0.0\sigma$
$C_{10}^{\prime e}$	-0.03	[-0.28, +0.22]	[-0.55, +0.46]	δ] 0.1σ

A good description of the data is given by

$$C_9^{\mu} - C_9^e - C_{10}^{\mu} + C_{10}^e \simeq -1.4$$

unless some of the individual coefficients are much larger than one in absolute value.

Chirality-flipped operators

The primed coefficients, corresponding to right-handed quark currents, cannot improve the agreement with the data by themselves.

Satoshi Mishima (KEK) 🜔

In combination with sizable un-primed coefficients, the primed coefficients can slightly improve the fit.

Chiral lepton currents

- A reduction of the same order in both ratios is possible in the presence of negative $C_{b_L \mu_L}^{BSM}$.

q2 dependence

 e, μ e, μ

 $O_{7\gamma}$

Satoshi Mishima (KEK) 🜔

 \boldsymbol{B}

- In the SM, uncertainties almost cancel in the ratio, but it's no longer true in presence of lepton-specific NP contributions.
- **9** R_{K^*} at low q2 is dominated by the photon pole, which gives a LFU contribution.

First bin of R_{K^*}

- The first bin is dominated by the dipole operator,
 which is bounded by $B(B o X_s \gamma)$.
- It is difficult to accommodate the data for the first bin through C9 and C10.
- A significant discrepancy in the first bin would imply the existence of light NP degrees of freedom.
 - More precise measurements will be important to clarify this issue.

Global fit

Capdevila, Crivellin, Descotes-Genon, Matias & Virto, 1704.05340

Two cases:

- LFUV(17measurements): $R_{K^{(*)}}$ (LHCb), $Q_{4,5}$ (Belle)
- All (175): $B \to K^* \mu \mu$ (ATLAS, Belle, CMS, LHCb) + above $B_s \to \phi \mu \mu$ (LHCb)

 $B(B \to X_s \gamma), \ B(B \to X_s \mu \mu), \ B(B_s \to \mu \mu), \ \text{etc. are also included in both cases.}$

Main anomalies:

Largest pulls	$\langle P_5' \rangle_{[4,6]}$	$\langle P_5' \rangle_{[6,8]}$	$R_K^{[1,6]}$	$R_{K^*}^{[0.045,1.1]}$	$R_{K^*}^{[1.1,6]}$	$\Big \mathcal{B}^{[2,5]}_{B_s\to\phi\mu^+\mu^-}$	$\left \mathcal{B}^{[5,8]}_{B_s \to \phi \mu^+ \mu^-}\right $
Experiment	-0.30 ± 0.16	-0.51 ± 0.12	$0.745^{+0.097}_{-0.082}$	$0.66^{+0.113}_{-0.074}$	$0.685^{+0.122}_{-0.083}$	0.77 ± 0.14	0.96 ± 0.15
SM prediction	-0.82 ± 0.08	-0.94 ± 0.08	1.00 ± 0.01	0.92 ± 0.02	1.00 ± 0.01	1.55 ± 0.33	1.88 ± 0.39
Pull (σ)	-2.9	-2.9	+2.6	+2.3	+2.6	+2.2	+2.2
Prediction for $C_{9\mu}^{\rm NP} = -1.1$	-0.50 ± 0.11	-0.73 ± 0.12	0.79 ± 0.01	0.90 ± 0.05	0.87 ± 0.08	1.30 ± 0.26	1.51 ± 0.30
Pull (σ)	-1.0	-1.3	+0.4	+1.9	+1.2	+1.8	+1.6

SM: p=4.4% for LFUV and p=14.6% for All

Global fit w/o LFUV observables

Altmanshofer, Niehoff, Stangl & Straub, 1703.09189

NP in $b \rightarrow s \mu \mu$

Coeff.	best fit	1σ	2σ	pull
$C_9^{ m NP}$	-1.19	[-1.41, -0.97]	[-1.61, -0.73]	4.9σ
C'_9	+0.13	[-0.08, +0.34]	[-0.29, +0.55]	0.6σ
$C_{10}^{ m NP}$	+0.64	[+0.41, +0.90]	[+0.18, +1.16]	2.8σ
C_{10}^{\prime}	-0.05	[-0.22, +0.11]	[-0.38, +0.28]	0.3σ
$C_9^{\rm NP}=C_{10}^{\rm NP}$	-0.33	[-0.53, -0.12]	[-0.70, +0.13]	1.5σ
$C_9^{\rm NP} = -C_{10}^{\rm NP}$	-0.61	[-0.74, -0.45]	[-0.92, -0.31]	4.3σ
$C_9' = C_{10}'$	+0.07	[-0.18, +0.32]	[-0.44, +0.58]	0.3σ
$C'_9 = -C'_{10}$	+0.05	[-0.05, +0.15]	[-0.15, +0.25]	0.5σ
$C_9^{ m NP},~C_{10}^{ m NP}$	(-1.17, +0.16)			4.6σ
$C_9^{ m NP},\ C_9'$	(-1.25, +0.55)			4.9σ
$C_9^{\mathrm{NP}},\ C_{10}^\prime$	(-1.34, -0.36)			5.0σ
$C_9^\prime,\ C_{10}^{ m NP}$	(+0.17, +0.66)			2.4σ
$C'_{9}, \ C'_{10}$	(+0.18, +0.05)			0.2σ
$C_{10}^{\rm NP}, \ C_{10}'$	(+0.64, -0.01)			2.4σ

9 The data can be described by NP in C_9^{μ} .

1D fits

Capdevila, Crivellin, Descotes-Genon, Matias & Virto, 1704.05340

• A NP contribution to muons is strongly preferred to that in electrons due to the angular data in $B \to K^* \mu \mu$.

			All	$[\sigma]$	[%]			LFUV	$[\sigma]$	[%]
1D Hyp.	Best fit	1 σ	2σ	Pull _{SM}	p-value	Best fit	1σ	2σ	Pull _{SM}	p-value
$\mathcal{C}_{9\mu}^{ ext{NP}}$	-1.10	[-1.27, -0.92]	[-1.43, -0.74]	5.7	72	-1.76	[-2.36, -1.23]	[-3.04, -0.76]	3.9	69
$\mathcal{C}_{9\mu}^{ m NP}=-\mathcal{C}_{10\mu}^{ m NP}$	-0.61	[-0.73, -0.48]	[-0.87, -0.36]	5.2	61	-0.66	[-0.84, -0.48]	[-1.04, -0.32]	4.1	78
${\cal C}_{9\mu}^{ m NP}=-{\cal C}_{9\mu}^{\prime}$	-1.01	[-1.18, -0.84]	[-1.33, -0.65]	5.4	66	-1.64	[-2.12, -1.05]	[-2.52, -0.49]	3.2	31
$\mathcal{C}_{9\mu}^{\rm NP} = -3\mathcal{C}_{9e}^{\rm NP}$	-1.06	[-1.23,-0.89]	[-1.39, -0.71]	5.8	74	-1.35	[-1.82, -0.95]	[-2.38, -0.59]	4.0	71

$$C_{9\mu}^{
m NP} < 0 \qquad \left| C_{9\mu}^{
m NP} / C_{9\mu}^{
m SM}
ight| \sim 25\,\%$$

Solution The 3rd hypothesis that would fail to explain R_K are not disfavored due to their good compatibility with R_{K^*} data.

Signs of NP contributions to coefficients

NP shifts in angular observables

Pink: SM

Blue: NP with $C_{9\mu}^{NP} = -1.3$

Capdevila, Crivellin, Descotes-Genon, Matias & Virto, 1704.05340

2D fits by another group

Altmannshofer, Stangl & Straub, 1704.05435

The results are very similar to those by Capdevila et al.

In the left plot, uncertainties of hadronic contributions are inflated by a factor of 5 w.r.t. their nominal estimates. Capdevila, Crivellin, Descotes-Genon, Matias & Virto, 1704.05340

	$\mathcal{C}_7^{\mathrm{NP}}$	$\mathcal{C}_{9\mu}^{\mathrm{NP}}$	${\cal C}^{ m NP}_{10\mu}$	$\mathcal{C}_{7'}$	$\mathcal{C}_{9'\mu}$	$\mathcal{C}_{10'\mu}$
Best fit	+0.017	-1.12	+0.33	+0.03	+0.59	+0.07
1σ	[-0.01, +0.05]	[-1.34, -0.85]	[+0.09, +0.59]	[+0.00, +0.06]	[+0.01, +1.12]	[-0.23, +0.37]
2σ	$\left [-0.03, +0.07] \right $	[-1.51, -0.61]	[-0.10, +0.80]	[-0.02, +0.08]	[-0.50, +1.56]	[-0.50, +0.64]

- 6D fit to "All" data
- SM pull: ~5 sigma

$$\mathcal{C}_7^{\text{NP}} \gtrsim 0, \, \mathcal{C}_{9\mu}^{\text{NP}} < 0, \, \mathcal{C}_{10\mu}^{\text{NP}} > 0, \, \mathcal{C}_7' \gtrsim 0, \, \mathcal{C}_{9\mu}' > 0, \, \mathcal{C}_{10\mu}' \gtrsim 0$$

where $C_{9\mu}$ is compatible with the SM beyond 3 σ , $C_{10\mu}$, $C_{7'}$ and $C_{9'}$ at 2 σ and all the other coefficients at 1 σ .

Solution The result confirms the need for a large negative contribution to C_9^{μ} .

Fit of LL, LR, RL, RR, ...

- "dirty" obs' favor a deviation from the SM in the same directions as "clean" ones.
- $\quad C^{\rm BSM}_{b_L \mu_L} < 0$

More results

9 4D fit

D'Amico, et al., 1704.05438

Global Bayesian 8D fit

W.Almannshofer, Talk at Aspen, Jan. 2016

generic tree
$$\frac{1}{\Lambda_{NP}^2} (\bar{s}\gamma_{\nu}P_Lb)(\bar{\mu}\gamma^{\nu}\mu)$$
 $\Lambda_{NP} \simeq 35 \text{ TeV} \times (C_9^{NP})^{-1/2}$ MFV tree $\frac{1}{\Lambda_{NP}^2} V_{tb} V_{ts}^* (\bar{s}\gamma_{\nu}P_Lb)(\bar{\mu}\gamma^{\nu}\mu)$ $\Lambda_{NP} \simeq 7 \text{ TeV} \times (C_9^{NP})^{-1/2}$ generic loop $\frac{1}{\Lambda_{NP}^2} \frac{1}{16\pi^2} (\bar{s}\gamma_{\nu}P_Lb)(\bar{\mu}\gamma^{\nu}\mu)$ $\Lambda_{NP} \simeq 3 \text{ TeV} \times (C_9^{NP})^{-1/2}$ MFV loop $\frac{1}{\Lambda_{NP}^2} \frac{1}{16\pi^2} V_{tb} V_{ts}^* (\bar{s}\gamma_{\nu}P_Lb)(\bar{\mu}\gamma^{\nu}\mu)$ $\Lambda_{NP} \simeq 0.6 \text{ TeV} \times (C_9^{NP})^{-1/2}$

NP or hadronic effects?

INP contributions are independent of q2 and universal for all helicity amplitudes. Altmannshofer, Niehoff, Stangl & Straub, 1703.09189

- compatible with a flat q2 dependence.
- consistent with a universal effect in different polarizations.
- but cannot exclude a possibility of large hadronic effects.

NP or hadronic effects?

Madronic contributions have been taken as fitting parameters: Ciuchini et al., 1704.05447

C9 vs. C10 and electron vs. muon

9 $Q_{4,5}$ will be very powerful tools to lift degeneracies in the fits.

Further observables

SMEFT

- Experimental data suggest that the NP scale is well above the EW scale.
- Consider an EFT built exclusively from the SM fields with the SM gauge symmetries. $SU(3)_c \times SU(2)_L \times U(1)_Y$

$c \rightarrow \frac{1}{2} \sum c c$	SMEFT operator	Definition	Matching	Order
$\mathcal{L}_{\text{SMEFT}} \supset \overline{\Lambda^2} \sum_k \mathcal{C}_k Q_k$.	$[Q_{\ell q}^{(1)}]_{aa23}$	$\left(\bar{\ell}_a \gamma_\mu \ell_a \right) \left(\bar{q}_2 \gamma^\mu q_3 \right)$	$\mathcal{O}_{9,10}$	Tree
κ	$[Q_{\ell q}^{(3)}]_{aa23}$	$\left(\bar{\ell}_a\gamma_\mu\tau^I\ell_a\right)\left(\bar{q}_2\gamma^\mu\tau^Iq_3 ight)$	$\mathcal{O}_{9,10}$	Tree
$\mathcal{C}_{9a}^{\mathrm{NP}} = \frac{\pi}{\alpha \lambda_t^{sb}} \frac{c}{\Lambda^2} \left\{ \left[\tilde{\mathcal{C}}_{\ell q}^{(1)} \right]_{aa23} + \left[\tilde{\mathcal{C}}_{\ell q}^{(3)} \right]_{aa23} + \left[\tilde{\mathcal{C}}_{qe} \right]_{23aa} \right\},$	$[Q_{qe}]_{23aa}$	$\left(ar{q}_2\gamma_\mu q_3 ight)\left(ar{e}_a\gamma^\mu e_a ight)$	$\mathcal{O}_{9,10}$	Tree
$\pi v^2 \left(v^{(1)} \right)$	$[Q_{\ell d}]_{aa23}$	$\left(ar{\ell}_a\gamma_\mu\ell_a ight)\left(ar{d}_2\gamma^\mu d_3 ight)$	$\mathcal{O}_{9,10}'$	Tree
$\mathcal{C}_{10a}^{\mathrm{NP}} = -\frac{\kappa}{\alpha\lambda_t^{sb}} \frac{\sigma}{\Lambda^2} \left\{ \left[\mathcal{C}_{\ell q}^{(1)} \right]_{aa23} + \left[\mathcal{C}_{\ell q}^{(3)} \right]_{aa23} - \left[\mathcal{C}_{qe} \right]_{23aa} \right\}$, $[Q_{ed}]_{aa23}$	$\left(ar{e}_a\gamma_\mu e_a ight)\left(ar{d}_2\gamma^\mu d_3 ight)$	$\mathcal{O}_{9,10}'$	Tree
$\mathcal{C}_{9a}^{\prime} = \frac{\pi}{\alpha \lambda_t^{sb}} \frac{v^2}{\Lambda^2} \left\{ \left[\tilde{\mathcal{C}}_{\ell d} \right]_{aa23} + \left[\tilde{\mathcal{C}}_{ed} \right]_{aa23} \right\},$	$[Q^{(1)}_{arphi\ell}]_{aa}$	$\left(arphi^{\dagger}i\overleftrightarrow{D}_{\mu}arphi ight) \left(ar{\ell}_{a}\gamma^{\mu}\ell_{a} ight)$	$\mathcal{O}_{9,10}$	1-loop
	$[Q^{(3)}_{arphi\ell}]_{aa}$	$\left(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} \varphi \right) \left(\bar{\ell}_{a} \gamma^{\mu} \tau^{I} \ell_{a} \right)$	$\mathcal{O}_{9,10}$	1-loop
$\pi v^2 \left(\begin{bmatrix} \tilde{a} \end{bmatrix} \begin{bmatrix} \tilde{a} \end{bmatrix} \right)$	$[Q_{\ell u}]_{aa33}$	$\left(ar{\ell}_a\gamma_\mu\ell_a ight)\left(ar{u}_3\gamma^\mu u_3 ight)$	$\mathcal{O}_{9,10}$	1-loop
$\mathcal{C}_{10a}' = -\frac{\alpha}{\alpha \lambda_t^{sb}} \frac{\varepsilon}{\Lambda^2} \left\{ \left[\mathcal{C}_{\ell d} \right]_{aa23} - \left[\mathcal{C}_{ed} \right]_{aa23} \right\} . \qquad [Q_{\varphi e}]_{aa}$		$\left(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi ight) \left(ar{e}_{a}\gamma^{\mu}e_{a} ight)$	$\mathcal{O}_{9,10}$	1-loop
Colis Eventes Martin Vicente & Virte 170105672	$[Q_{eu}]_{aa33}$	$\left(ar{e}_a\gamma_\mu e_a ight)\left(ar{u}_3\gamma^\mu u_3 ight)$	$\mathcal{O}_{9,10}$	1-loop

Celis, Fuentes-Martin, Vicente & Virto, 1704.05672

Satoshi Mishima (KEK)

 $[\forall eu]aa33$

SMEFT

($\mathcal{C}_{\ell q}^{(1,3)}$]₂₂₂₃ play a crucial role in the explanation of the anomalies

FIG. 2. Constraints on the SMEFT Wilson coefficients $C_{\ell q}^{(1)}$ and $C_{\ell d}$ with $\Lambda = 30$ TeV, assuming no NP in the electron modes. The individual constraints from R_K and R_{K^*} at the 3σ level are represented by filled bands. The combined fit to R_K and R_{K^*} is shown in blue (1,2 and 3 σ contours). The result of a global fit with all $b \to s\ell^+\ell^-$ data included in [7] is shown in a similar way as red dashed contours.

Celis, Fuentes-Martin, Vicente & Virto, 1704.05672 (see also Feruglio, Paradisi & Pattori, 1705.00929)

SMEFT operator	Definition	Matching	g Order
$[Q_{\ell q}^{(1)}]_{aa23}$	$\left(\bar{\ell}_a\gamma_\mu\ell_a\right)\left(\bar{q}_2\gamma^\mu q_3 ight)$	$\mathcal{O}_{9,10}$	Tree
$[Q_{\ell q}^{(3)}]_{aa23}$	$\left(\bar{\ell}_a\gamma_\mu\tau^I\ell_a\right)\left(\bar{q}_2\gamma^\mu\tau^Iq_3\right)$	$\mathcal{O}_{9,10}$	Tree
$[Q_{qe}]_{23aa}$	$\left(ar{q}_2\gamma_\mu q_3 ight)\left(ar{e}_a\gamma^\mu e_a ight)$	$\mathcal{O}_{9,10}$	Tree
$[Q_{\ell d}]_{aa23}$	$\left(ar{\ell}_a\gamma_\mu\ell_a ight)\left(ar{d}_2\gamma^\mu d_3 ight)$	$\mathcal{O}_{9,10}'$	Tree
$[Q_{ed}]_{aa23}$	$\left(ar{e}_a\gamma_\mu e_a ight)\left(ar{d}_2\gamma^\mu d_3 ight)$	$\mathcal{O}_{9,10}'$	Tree
$[Q^{(1)}_{arphi\ell}]_{aa}$	$\left(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi \right) \left(\bar{\ell}_a \gamma^{\mu} \ell_a \right)$	$\mathcal{O}_{9,10}$	1-loop
$[Q^{(3)}_{arphi\ell}]_{aa}$	$\left(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi\right)\left(\bar{\ell}_{a}\gamma^{\mu}\tau^{I}\ell_{a}\right)$	$\mathcal{O}_{9,10}$	1-loop
$[Q_{\ell u}]_{aa33}$	$\left(\bar{\ell}_a \gamma_\mu \ell_a ight) \left(\bar{u}_3 \gamma^\mu u_3 ight)$	$\mathcal{O}_{9,10}$	1-loop
$[Q_{arphi e}]_{aa}$	$\left(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi ight) \left(\bar{e}_a \gamma^{\mu} e_a ight)$	$\mathcal{O}_{9,10}$	1-loop
$[Q_{eu}]_{aa33}$	$\left(ar{e}_a\gamma_\mu e_a ight)\left(ar{u}_3\gamma^\mu u_3 ight)$	$\mathcal{O}_{9,10}$	1-loop

3. Summary

- Second RK and RK* can be explained by lepton-specific NP four-fermion contact interactions (\$\overline{s}P_Lb\$)(\$\overline{\ell}P_L\$\overline{\ell}\$).
- Models with the RH quark current are disfavored, since they cannot explain RK<1 and RK*<1 simultaneously.</p>
- LFUV and angular observables look consistent and favor independently the same pattern of deviations from the SM.

$$C_{9\mu}^{\mathrm{NP}} pprox -1.2 \qquad C_{b_L\mu_L}^{\mathrm{NP}} pprox -1.3$$

Preferred hypotheses:

$$C^{
m NP}_{9\mu}, \ \ C^{
m NP}_{9\mu} = -C^{
m NP}_{10\mu}, \ \ C^{
m NP}_{9\mu} = C'^{
m NP}_{9\mu}$$

Future precise measurements of Q4 and Q5 can help to identify the chirality structure of the lepton currents.

Backup

Hadronic contributions

M. Ciuchini, M. Fedele, E. Franco, S.M., A. Paul, L. Silvestrini & M.Valli, arXiv:1512.07157

Not conclusive! Need more efforts!

See also 1701.08672, 1702.02234