

Experimental campaign of the HL-LHC beam screen

Marco Morrone, Cedric Garion TE-VSC-DLM

with inputs from: Piotr Gach

WP3 meeting – 18 May 2017

M. Morrone, C. Garion

Contents

- The HL-LHC beam screen
- Mechanical behavior of the beam screen during a magnet quench
 - Quench protection scheme not including CLIQ
 - Quench protection scheme including CLIQ
- Aim of the test
- Quench test setup
- Instrumented beam screen
- Beam screen test type
- Experimental campaign proposal (Q1, Q2, D1 beam screen)

The HL-LHC beam screen *

Tungsten alloy blocks:

- Chemical composition: 95% W, ~3.5% Ni, ~ 1.5% Cu
- mechanically connected to the beam screen tube: positioned with pins and titanium elastic rings
- Heat load: 15-25 W/m

Thermal links:

- In copper
- Connected to the absorbers and the cooling tubes or beam screen tube

Cooling tubes:

- Outer Diameter: 10 or 16 mm
- Laser welded on the beam screen tube

Beam screen tube (BS) at ~ 50 K:

- Perforated tube (~2%) in High Mn High N stainless steel (1740 l/s/m (H2 at 50K))
- Internal copper layer (80 μm) for impedance
- · a-C coating (as a baseline) for e- cloud mitigation
- Laser treatments under investigation

Beam screen dimensions*

4

F_max _heat absorber 233.46 N/mm

- \rightarrow Magnet gradient uniform for all the poles.
- → G' always negative!!

In red the expected forces.

Lorentz forces

Eddy currents

The integrated forces are equal in each quadrant. Therefore, one quadrant is sufficient to describe the behavior of the whole assembly.

Q2_W= 18.9 kA

M. Morrone, C. Garion

Quench protection scheme including CLIQ

Ultimate currents_ I₀=17800 A

Quench protection scheme including CLIQ

Phase 1: Most critical!!

	Q	L	Q2			
component	Torque [N m]	Tangential force [N]	Torque [N m]	Tangential force [N]		
Cold bore	253	3400	253	3400		
Heat absorber	280	4200	148.5	2216		
Octagonal pipe	81.5	1600	231	3800		

Phase 2: Less severe than phase 1

Phase 3: Less severe than without CLIQ

E.g. Fy for the tungsten block: $Q1_{NO CLIQ} \sim 233.5 [N/mm] > Q1_{CLIQ} \sim 200.5 [N/mm]$

Q1 beam screen during the CLIQ discharge

Aim of the test

Validation of the proposed beam screen design, compatible with the CLIQ system, during a magnet quench.

11

Quench test setup

Quench test setup

Quench test setup

HILUMI HL-LHC PROJECT Front view

Rear view

Instrumented beam screen

Instrumented beam screen

Test conditions

- Temperature: 1.9 K (significant change of the electrical resistivity for Cu*);
- BS immersed in the helium bath (damping of the dynamic response);
- Magnetic field decay representative of the HL-LHC conditions, including the CLIQ system;
- Vertical position of the beam screen.

Experimental campaign proposal

Beam screens to be tested:	Magnet:	Date:
-Q1_v1 (W block 16 mm thick);	MQXFS+CLIQ;	Mid-July 2017 ?
-Q2_v1 (W block 6 mm thick);	MQXFS+CLIQ;	October 2017 ?
-D1_v1 (W block 6 mm thick).	KEK	Beginning of 2018?
In case of any modifications:		
-Q1_v2 (W block 16 mm thick);	MQXFS+CLIQ;	2018
-Q2_v2 (W block 6 mm thick);	MQXFS+CLIQ;	2018
-D1_v2 (W block 6 mm thick).	KEK	2018

-D1_v2 (W block 6 mm thick).

Thank you for your attention

Highest Lorentz forces induced by Foucault currents per quadrant:

Beam screen displacement during a magnet quench:

not welded but posed on the octagonal pipe.

Q1 Quench protection scheme not including CLIQ

Component	Material	Tensile strength [MPa]	Max VM stress [MPa]	Max displacement [mm]				
Cold Bore	Ss 316 LN	860 (at 4 K)	524	0.20				
Absorber	Inermet	1284 (at 77K)	25	1.70				
Octagon	Ss P506	1350 (at 50 K)	469	0.69				
Inner layer	Copper	35 (at 50 K)	35	0.69				

* Limited elastic-perfectly plastic assumption

Q2-Q3 Quench protection scheme not including CLIQ

Component	Material	Tensile strength [MPa]	Max VM stress [MPa]	Max displacement [mm]
Cold Bore	Ss 316 LN	860 (at 4 K)	389.45	0.15
Absorber	Inermet	1284 (at 77K)	138.34	1.65
Octagon	Ss P506	1350 (at 50 K)	548.49	0.68
Inner layer	Copper	35 (at 50 K)	35	0.68

* Limited elastic-perfectly plastic assumption

D1 Quench protection scheme not including CLIQ

* Limited elastic-perfectly plastic assumption

 γ_{2a}

Details of the original beam screen design (without CLIQ)

Quench protection scheme including CLIQ

For illustrative purposes only!! W blocks are not welded but posed on the octagonal pipe.

M. Morrone

Details of the original beam screen design

Q2 beam screen during the CLIQ discharge

Q2 beam screen during the CLIQ discharge

M. Morrone

Q1 beam screen during the CLIQ discharge

Q1 beam screen during the CLIQ discharge

HILUMI HL-LHC PROJECT The original design of the beam screen does not withstand the effects of the CLIQ discharge without plastic deformations.

Therefore...

Details of the proposed beam screen design

New pin concept

Details of the proposed beam screen design

M. Morrone

M. Morrone

Multiphysics model 2

+

The model accounts for

- 1. Saturation
- **Magneto-thermal properties** 2.
- Coil electrodynamics (equivalent \overline{M}) 3.
- Quench transition 4.
- Eddy currents in conductive domains 5.
- CLIQ (Co-simulation)

Courtesy of Lorenzo Bortot

M. Morrone

Assumptions:

CLIQ unit (40 mF, 600V) discharge in Q1 magnet, [0-30] ms

Benchmark

The arm of the force developing the torque according to:

multiphysics model $1 \rightarrow 15.76$ mm; multiphysics model $2 \rightarrow 15.72$ mm.

Courtesy of Lorenzo Bortot

Proposed Q1 beam screen during the CLIQ discharge (multiphysics model 2)

M. Morrone

Comparison

Comparison

NO CLIQ

Comparison

No CLIQ

	nt material Elastic lim		Q1			Q2			D1		
component		Elastic limit	F _{y max} [N/mm] -per quadrant-	σ _{max} [MPa]	δ _{max} [mm]	F _{y max} [N/mm] -per quadrant-	σ _{max} [MPa]	δ _{max} [mm]	F _{y max} [N/mm] -per half-	σ _{max} [MPa]	δ _{max} [mm]
Cold bore	Ss 316 LN	860 MPa (at 4 K)	58.77	523.56	0.202	61.47	389.45	0.150	30.56	280.23	0.983
Heat absorber	Inermet	1284 (at 77K)	233.46	61.19	1.703	108.27	138.34	1.650	27.94	279.51	2.472
Octagonal pipe	Ss P506	1350 Mpa (at 50 K)	4.71	469.09	0.694	9.06	548.49	0.684	5.7	423.92	2.472
Cu layer	Copper OFE	35 MPa (at 50 K)	36.99	35*	0.694	59.39	35*	0.684	48.42	35*	2.472

CLIQ phase 1

			Q1			Q2			Q1 (Em dynamics)		
component	material	Elastic limit	F _{y max} [N/mm] -per eight-	σ _{max} [MPa]	δ _{max} [mm]	F _{y max} [N/mm] -per eight-	σ _{max} [MPa]	δ _{max} [mm]	F _{y max} [N/mm] -per eight-	σ _{max} [MPa]	δ _{max} [mm]
Cold bore	Ss 316 LN	860 MPa (at 4 K)	12.3	624.19	1.51	12.3	282	1.03	8.3	445	1.06
Heat absorber	Inermet	1284 (at 77K)	22	> 1284*	-	11.3	505	-	16	1100	-
Octagonal pipe+ Cu layer	Ss P506	1350 MPa (at 50 K)	5.3	> 1350*	-	14	950	-	3.8	> 1350*	-
Pin	Ss P506	1350 MPa (at 50 K)	-	> 1350*	-	-	650	-	-	> 1350*	-

