Complementary actions for the MQWs:

- to double the spares (without new ones)
- to further reduce the dose
(at limited cost)

Attilio Milanese

10 May 2017

This is an overview of a proposal put forward some time ago, more details can be found in that note

The MQWs come in two families: MQWA \& MQWB

The circuits have 10 MQWAs in series, with the MQWBs used as trims: this is the (sketched) schematics for Q5 L/R 3

In total, there are 12 circuits, with 48 MQWs installed, plus 4 spares (with no radiation)

circuit	MQWA	MQWB	current [A] 7 TeV FiDeL
RQ4.LR3	10	-	561
RQT4.L3	-	1	313
RQT4.R3	-	1	-313
RQ5.LR3	10		593
RQT5.L3	-	1	-441
RQT5.R3	-	1	441
RQ4.LR7	10		598
RQT4.L7	-	1	152
RQT4.R7	-	1	-152
RQ5.LR7	10		610
RQT5.L7*	-	1	17
RQT5.R7*	-	1	-17

* to be removed in LS2

The two beams can see different $\int B^{\prime}$: this is Q5.L3, the location where the difference is larger

```
values for 7 TeV
    from FiDeL
```


$30.45 \mathrm{~T} / \mathrm{m}$	$30.45 \mathrm{~T} / \mathrm{m}$	$30.45 \mathrm{~T} / \mathrm{m}$	$22.70 \mathrm{~T} / \mathrm{m}$ \square	$30.45 \mathrm{~T} / \mathrm{m}$	$30.45 \mathrm{~T} / \mathrm{m}$
30.45 T/m	30.45 T/m	30.45 T/m		30.45 T/m	$30.45 \mathrm{~T} / \mathrm{m}$

The same effect can be achieved by powering the apertures independently, which also allows to remove 1 out of 6 units

values for 7 TeV

$$
\begin{gathered}
\int \mathrm{B}_{\text {beam 1 }}=5 \times 34.99 \times 3.108=543.74 \mathrm{~T} \\
\int \mathrm{~B}^{\prime} \text { beam 2 }=5 \times 25.91 \times 3.108=402.64 \mathrm{~T} \\
\int \mathrm{~B}^{\prime}{ }_{\text {beam 2 }} / \int \mathrm{B}^{\prime}{ }_{\text {beam 1 }}=0.74
\end{gathered}
$$

The ratios of $\int B^{\prime}$ between the two apertures range from 74% to (almost) 100\%

The MQWs have a peculiar magnetic design, still an unequal excitation in the apertures looks feasible: this is an extreme

In the MQWAs, flux is shared between the two halves

The MQWBs, on the other hand, look like two figure-of-8 quadrupoles side by side

The situation is in between for a hybrid powering: 70% is the maximum expected difference, with some margin

This is not a new idea, simulations were done 20 years ago... but finally a different scheme was retained

$$
\begin{array}{r}
\text { LHC Project Note } 100 \\
\text { August 13, } 1997 \\
\hline \text { Gijs.De.Rijk@cern.ch }
\end{array}
$$

Magnetic Field quality for MQW cleaning insertion quadrupole with unequal excitation in the two apertures
G. de Rijk

We could remove the most exposed unit in each block of 6 , putting a proper absorber in space: ex. Q5.L3, from the note

A possible circuit implementation involves using the same converters and some re-cabling (in the tunnel only) without losing any degrees of freedom for the beam

> 10 MQWs , as today $810 \mathrm{~A} \times 450 \mathrm{~V}$ (RPTF) still ok at the surface

We would thus reduce the dose on the installed magnets and possibly increase the number of spares

We propose to further analyse this scheme, to complement the present baseline (W and Cu shields, radiation studies), and to revise the need of more spare magnets / coils
(1.) magnetic measurements
to do
being organized with a subset of currents, to confirm magnetic coupling, field homogeneity and mutual inductances
(2.) beam optics / dynamics
to be checked, in particular for the (small) longitudinal shift of the centre of the lenses, and for the higher harmonics
(3.) power converters \& cabling
re-configuration of the $600 \mathrm{~A} \times 40 \mathrm{~V}$ as trims to be assessed / costed
(4.) radiation doses \& absorbers
projected doses at $4000 \mathrm{fb}^{-1}$, considering the latest readings of the dosimeters and dedicated absorbers to be installed (if needed) at the location of removed MQWs

This is another (last minute) layout - shall we look for the best option at the 4 different locations?

8 MQWs $+21 / 2=9$, 1 less than today $810 \mathrm{~A} \times 450 \mathrm{~V}$ (RPTF) ok at the surface

thank you

