Radiation
Radiation damage in silicon detectors
Radiation damage in silicon detectors
Radiation damage in silicon detectors: DEAL WITH IT
Outline

• Introduction

• Radiation damage
 • How do we study it
 • Effects

• Conclusions
Introduction

• High demanding radiation environment

• Need to understand how radiation damage affects detector performance
Displacement damage

- Displacements of atoms
- Defects in the lattice
 - Creates energy levels in the band gap
- The new levels can act as traps
How do we study it

• Irradiation up to very high radiation fluence
 • Protons and neutrons

• Measurements of parameters as leakage current, depletion depth, etc
Effects of displacement damage

- Increased leakage current, due to levels in the band gap
 - Increased noise
- Acceptor removal
 - Effective doping concentration of the substrate decreases
 - Depletion region increases
Ionizing damage

- Defects in the silicon oxide
 - Fixed positive charge near the interface
- Changes the functionality of components
How do we study it

• Gamma ray irradiation of test-chips
 • Photons of different energy and dose specification

• Measurement of electrical parameters:
 • Leakage current
 • Transistors characteristics
 • Capacitance
 • Cross-talk
Effects of ionizing damage

- Due to fixed positive charge in the oxide layer, electrons are accumulating on the interface
 - Increase in the leakage current
 - Change of transistor threshold voltage
Conclusion

Design

Simulate
Conclusion

Design

Measure

Simulate
Conclusion

Design
Measure
Simulate

9
Silicon detectors basics

• **P-N junction is the basic element of a particle detector:**
 - Charge carriers move into the junction and recombine
 - Electric field induced inside this **depleted region**

• **Distinguish 2 energy bands:**
 - Valence band: electrons bounded in the Si atom
 - Conduction band: electrons moving freely through the sensor ➡️ **Noise!**

• Electrons can be thermally excited from the valence to the conduction band ➡️ **Leakage current**

• Leakage current highly reduced in the depletion region due to absence of charge carriers