Radiation Damage in Silicon Detectors

Marko Mikuž
University of Ljubljana & Jožef Stefan Institute
Ljubljana, Slovenia
STREAM Winter School
CERN, November 6th, 2017
Outline

• Prelude
• Basics of silicon detector operation
• Radiation fields at hadron colliders
• Radiation damage
 – Displacement damage
 – Ionization
• Operation of irradiated silicon detectors
• From LHC to HL-LHC
• Conclusions and outlook
• Position sensitive silicon detectors are an indispensable ingredient of any collider experiment
 – mostly as tracking detectors, but also for calorimetry
• Physics requirements in terms of integrated luminosity and the resulting particle fluences are ever escalating
 – for LHC 10^{15} n$_{eq}$/cm2 considered extremely difficult
 • design was 730/fb @14TeV...
 – HL-LHC takes it to nx10^{16} (vertex) or even 10^{17} (FW calo)
 • 4000/fb @14TeV
 – FCC is dreaming of towards 10^{18} for the tracker
 • 30/ab @100TeV
• Ratio \sim1:20:600!
• What is the limit of silicon sensors?
Pushing the Limits

• Progress in radiation hardness is astounding
 – evolution, spiced up by a couple of revolutions
 – hard work of the whole community
 – many new ideas and concepts developed

• R&D mostly by individuals/groups
 – resources needed moderate in HEP terms

• Streamlined by collaborations/projects
 – CERN RD-48 and RD-50
 – EC sponsored:
 • AIDA, AIDA2020 (IP)
 • MC-PAD, STREAM (MC)
Si material properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>atomic number</td>
<td>14</td>
</tr>
<tr>
<td>atomic mass</td>
<td>28.09</td>
</tr>
<tr>
<td>distance between lattice atoms</td>
<td>5.34×10^{-10} cm</td>
</tr>
<tr>
<td>ε</td>
<td>11.9</td>
</tr>
<tr>
<td>density</td>
<td>2.328 g/cm^3</td>
</tr>
<tr>
<td>density (SiO$_2$)</td>
<td>2.33 g/cm^3</td>
</tr>
<tr>
<td>density of atoms</td>
<td>$5.0 \times 10^{22} \text{ cm}^{-3}$</td>
</tr>
<tr>
<td>intrinsic carrier concentration at $T = 300$ K (n_i)</td>
<td>$1.45 \times 10^{10} \text{ cm}^{-3}$</td>
</tr>
<tr>
<td>effective density of states ($T = 300$ K):</td>
<td></td>
</tr>
<tr>
<td>in conduction band (N_c)</td>
<td>$2.80 \times 10^{19} \text{ cm}^{-3}$</td>
</tr>
<tr>
<td>in valence band (N_v)</td>
<td>$1.04 \times 10^{19} \text{ cm}^{-3}$</td>
</tr>
<tr>
<td>energy gap ($T = 300$ K) (E_g)</td>
<td>1.12 eV</td>
</tr>
<tr>
<td>average minimum ionizing particle energy</td>
<td></td>
</tr>
<tr>
<td>loss ($dE/d(\rho x)$)</td>
<td>166 keV kg$^{-1}$ m2</td>
</tr>
<tr>
<td>electron mobility $\mu_{0,e}$</td>
<td>1380 cm2/Vs</td>
</tr>
<tr>
<td>hole mobility $\mu_{0,h}$</td>
<td>480 cm2/Vs</td>
</tr>
<tr>
<td>m_e^* (at bottom of conduction band)</td>
<td>0.558 m_e</td>
</tr>
<tr>
<td>m_h^* (at top of valence band)</td>
<td>1.08 m_e</td>
</tr>
<tr>
<td>$v_{th,e}$ (at $T = 300$ K)</td>
<td>2.3×10^7 cm/s</td>
</tr>
<tr>
<td>$v_{th,h}$ (at $T = 300$ K)</td>
<td>1.65×10^7 cm/s</td>
</tr>
</tbody>
</table>

in thermal equilibrium

Electrically Neutral Bulk (ENB)

$$np = n_i^2 = N_C N_V e^{-\frac{E_g}{k_B T}}$$

$$N_{C,V} = 2 \left(\frac{2\pi m_{e,h}^* k_B T}{\hbar^2} \right)^{\frac{3}{2}}$$
Fermi Level

- Carrier density governed by Fermi-Dirac statistics

\[F(E) = \frac{1}{1 + \exp\left(\frac{E - E_F}{k_B T}\right)} \]

\[n = N_C e^{-\frac{E_C - E_F}{k_B T}} \]

\[p = N_V e^{-\frac{E_F - E_V}{k_B T}} \]

- Extrinsic (doped): \(E_F \) adapts closer to \(E_C (E_V) \)
 - \(n \approx N_D \) (donors, n-type) or \(p = N_A \) (acceptors, p-type)
Drift and Conductivity

- In electric field charge carriers drift
- mobility $\mu = \mu(E)$
 - zero field mobility μ_0
 - saturation velocity v_{sat}
 - $v_{sat} \approx 100 \, \mu m/\text{ns}$
 - transit times $D/\nu > n s$
- resulting resistivity
 \[
 \rho = \frac{1}{e_0(\mu_e n + \mu_h p)}
 \]
 - for intrinsic ($n=p=n_i$): $\rho \approx 230 \, k\Omega \cdot cm$ ($T=300 K$)
 - high resistivity 5 k$\Omega \cdot cm$ $n(p)$-type: $N_D(N_A) = 0.9(2.6) \times 10^{12} \, \text{cm}^{-3}$
- Impossible to see particle signal in presence of current
p-n Junction

- Join *n*-doped and *p*-doped Si
 - mobile carriers diffuse across junction and recombine
 - ions stay constituting **space charge region** (SCR) depleted of carriers
 - resulting electric field opposes diffusion
 - resulting $V_{bi} \approx 1$ V
 - added reverse bias provokes further diffusion, widening SCR

- **Simplification** – abrupt junction in 1-D
 - solve Poisson equation
 - space charge constant, junction neutral ($N_A D_A = N_D D_D$)
 - electric field linear, peaked at junction
 - electric potential quadratic
 - usually $N_{A(D)} \gg N_{D(A)}$, so $w_{SCR} \approx w_{SCR, D(A)}$

$$- \frac{d^2 V}{dx^2} = \frac{\rho_e(x)}{\varepsilon_s \varepsilon_0}$$
Space Charge Region

- Single sided abrupt junction
 - p^+n or n^+p ($N_D -> N_A$)
 - compensated material
 - $N_D \rightarrow N_{\text{eff}} = |N_D - N_A|$
 - $w=D$ full depletion voltage V_{FD}
 - scales with N_{eff} (or $1/\rho$) and D^2
 - $V_{FD} = 70$ V @ $N_{\text{eff}} = 10^{12}$ cm$^{-3}$ for $D = 300$ μm
 - for high resistivity silicon (5 kΩ.cm) and $D = 300$ μm
 - $V_{FD} \approx 65$ V(n) or 180 V(p)
 - $E_{\text{max}} \approx 0.2$ or 0.6 V/μm at junction
 - $V > V_{FD}$ add constant $E_c = (V - V_{FD})/D$ to linear field @ V_{FD}
 - field slope (N_{eff}) independent of V

\[w(V) = \sqrt{\frac{2\epsilon_S\epsilon_0}{e_0 N_D}} V \]
Segmented Detectors

- 1-D approach adequate for pad detectors or when lateral dimension $L \gg D$
 - often also used for first estimates
- Realistic detectors 2-D (strips) or 3-D (pixels) with electrode segmentation (single/double sided, 3D)
 - solve Poisson equation in 3-D to obtain el. field
 - doping profile can deviate from abrupt
- Numerical simulations, often using TCAD package
V_{FD} measurement: I-V and C-V

- 1-D pad detector
 - I dominated by generation in SCR
 - surface current contribution
 - guard ring
 - $1/C^2$ of SCR linear in V up to V_{FD}
 - ENB: R or $1/\omega C$?
 - surface R?
 - V_{FD} from “kink” in $1/C^2$ vs. V

\[
C \propto \frac{1}{w} \propto \sqrt{\frac{V_{FD}}{V}}
\]

\[
\frac{1}{C^2} = \frac{2}{\varepsilon_0 \varepsilon_{Si} \varepsilon_0 N_{eff} S^2} V
\]
Signal Formation

- Charged particle ionizes silicon along its path
 - Landau fluctuations of ionization
 - mean dE/dx ill-defined
 - MIP creates 108 e-h pairs/μm on average (72e MPV for 300 μm Si)
 - in SCR the charges start moving towards electrodes
 - in absence of field the charges rapidly recombine
 - promptly current gets induced on electrodes – mirror charge
 - no need to wait until charge gets “collected”
- Induced current given by Ramo-Shockley theorem

\[I(t) = \frac{q \cdot v \cdot E}{w} = q \cdot \mu(E) \cdot E \cdot E_w \]
Weighting Field

\[I(t) = q \cdot \mu(E) \cdot \vec{E} \cdot E_w \]

- \(E_w \) is the weighting (Ramo) field
 - solve Laplace equation (no space charge!) for weighing potential \(V_w \) with
 - readout electrode at unit potential (\(V_w = 1 \))
 - all other electrodes grounded (\(V_w = 0 \))
 - fraction of induced charge given by \(\Delta V_w \)
 - \(E_w = -\text{grad}(V_w) \)
 - in 1-D \(E_w = 1/w \)
 - numerical simulation with many cells required for a realistic \(E_w \) of pixel/strip

- Resulting \(I(t) \) subject to transfer function of the electronics

\[I(t) = q \cdot \mu(E) \cdot \vec{E} \cdot E_w \]
Radiation Field at (HL)-LHC

- At $L=10^{34}$ cm$^{-2}$s$^{-1}$ LHC produces $R = \sigma. L = 800$ MHz of inelastic 13 TeV pp collisions
- Each collision yields \sim14 primary charged particles, mostly pions, with $p_T > 0.5$ GeV/c in the tracker ($|\eta|<2.5$)
- \simsame flux of high energy gammas is created from $\pi^0 \rightarrow 2\gamma$
- Detector material produces
 - e^+e^- pairs from conversions, \simdoubling every X_0
 - additional hadrons (pions) from nuclear interactions
 - interaction length Λ_i; for detector material $\Lambda_i > X_0$
 - fast neutrons from spallation in calorimeters
 - very long-lived
 - bounce around until captured or thermalized
 - reach back tracker – albedo neutrons
Radiation Effects - Ionization

• Total Ionization Dose (TID) \([\text{Gy} = \text{J/kg}, (= 100 \text{ rad})]\]
 – charged particles ionize matter
 • neutrons through ionization KERMA \((p, \text{fragments})\)
 • gammas through pair production \(\rightarrow e^+e^-\)
 – produces \(e-h\) pairs in Si at 3.6 eV per pair \(\rightarrow\) signal
 – positive charges remain in oxide \(\rightarrow\) sensor surface, electronics

• Bethe-Bloch formula
 – function of \(\beta\gamma (\nu)\) only
 • small modification for \(e\)
 – shallow minimum around \(\beta\gamma \approx 3\) \(\rightarrow\) MIP
 • \(dE/(\rho dx) \approx 2 \text{ MeV}/(\text{g/cm}^2)\)
 • \(dE/dx_{\text{Si}} = 390 \text{ eV}(108 \text{ e-h})/\mu\text{m}\)
 – relativistic rise at high \(\beta\gamma\)
 • limited by: polarization (density), restricted loss (escape)
Radiation Effects - Displacement

• Non-Ionizing Energy Loss (NIEL) \(\frac{n_{eq}}{cm^2} \)
 – heavy particles displace Si atoms from lattice – bulk damage
 • primary knock-on atom (PKA), threshold \(\sim 20 \) eV
 • interstitial atom (I) and vacancy (V) in Si lattice – primary defects
 • PKA knocks out further atoms until \(E < 20 \) eV
 – about 50 % of NIEL ends up in displacements, rest in phonons

• NIEL normalized to 1 MeV neutrons
 – 95 MeV.mb per Si atom
 • \(10^{17} \) n/cm\(^2\) displaces \(\sim 2 \times 10^{-4} \) of atoms
 • \(dNIEL/(\rho dx) \approx 2 \text{ keV}/(g/cm^2) \)
 – particles fluences converted to 1 MeV neutron equivalent fluence
 – hardness factor \(\kappa = \frac{\Phi_{eq}}{\Phi} \)
 • fast pions, protons \(\kappa \leq 1 \)
 • electrons, thermal neutrons \(\kappa \ll 1 \)
Defect Dynamics

- Vastly different topologies
 - 10 MeV p – point defects
 - 1 MeV n – clusters
 - 24 GeV p – in-between
- Number of V scales with NIEL
- Basis of NIEL hypothesis: All bulk damage scales with NIEL

- Most (~90%) of $I-V$ recombine within cluster
 - or form V_2/V_3 (Group B)
- The rest diffuses and interacts with each other and impurities to form stable defects in lattice (Group A)
- Stable defects have their own long term dynamics - annealing
Bulk damage to Si Sensor

- Some of stable defects electrically active
 - energy levels in band-gap
 - deep
 - donors
 - acceptors
 - multi-charge states
- Defects neutralize initial shallow dopants
 - donor, acceptor removal
 - exponential with fluence: $N = N_0 e^{-c\Phi}$
 - removal constant scales with initial doping ($c \approx 2.10^{-13}$ cm2 for high ρ)
 - mechanism not fully understood

- Shockley-Read-Hall statistics
 - thermal equilibrium (ENB)
 - Fermi-Dirac statistics for level occupancy
 - e and h capture/emission balanced for each defect
 - Fermi level adapts to ensure overall neutrality
 - SCR
 - \approxno e/h to capture, only emission remains
 - $E_i \approx$ mid-gap instead of Fermi level
 - donor/acceptor ionized in SCR if few $k_B T$ above/below E_i
Manifestations of Bulk Damage

- Ionized deep traps contribute to space charge
 - deep acceptors prevail – **negative space charge**
- States close to mid-gap have ∼equal e/h emission rates

\[
U = \frac{\sigma_n \sigma_p v_{th} N_t (pn - n_i^2)}{\sigma_n [n + n_i \exp\left(\frac{E_i - E_t}{kT}\right)] + \sigma_p [p + n_i \exp\left(\frac{E_i - E_t}{kT}\right)]}
\]

- generation leakage current
- Defects trap signal (and current) charge – **trapping**
 - ionized/neutral acceptors trap holes/electrons
 - ionized/neutral donors trap electrons/holes
 - trapping cross sections usually larger for ionized traps
 - emission times long on signal collection time-scale – charge lost
- ENB: if $N_t >> N_{D,A}$ - defects pin E_F close to deep levels: $\rho \rightarrow \rho_i$

$U=R-G$
ENB: $U=0$
SCR: $p=n\approx 0; U=-G$
Bulk Damage: Space Charge

- Hamburg model
 - effective acceptor introduction
 - stable – $g_c \approx 0.015$ cm$^{-1}$
 - short term (beneficial) annealing - $g_a \approx 0.018$ cm$^{-1}$
 - long term (reverse) annealing – $g_{ra} \approx 0.052$ cm$^{-1}$
 - (incomplete) shallow donor removal

\[
\frac{\Delta N_{eff}(t)}{\Phi_{eq}} = g_c + \sum_{\text{annealing}} g_a e^{-t/\tau_a} + \sum_{\text{rev. annealing}} g_{ra} (1 - e^{-t/\tau_{ra}}) +
\]

\[
\frac{(N_D(0) - N_D(\Phi_{eq})) - (N_A(0) - N_A(\Phi_{eq}))}{\Phi_{eq}}
\]

- $\tau_{ra} O(y)$ and $\tau_a O(d)$ at R.T
- can optimize operation to stay close to shallow minimum between the two
 - 80 min annealing @60°C

- Effectively $N_{eff} = -\beta \Phi$ for $\Phi > 10^{13-14} \text{ n}_{eq}/\text{cm}^2$
 - $\beta \approx 0.02$ cm$^{-1}$ -> $N_{eff} \approx 10^{12} \text{ cm}^{-3}$ @ $\Phi \approx 5 \times 10^{13} \text{ n}_{eq}/\text{cm}^2$
• (HL)-LHC experiments last for \(O(10\,\text{y})\)
 – Cannot ignore annealing
 – Annealing scenario needed
 – Time constants exponentially dependent on \(T\) – Arrhenius relation

\[
\tau(T) = \tau(T_0) \cdot \exp \left(- \frac{E_a (T - T_0)}{k_B T_0 T} \right)
\]

– \(E_a\) – activation energy
 • annealing: \(\tau(20^\circ C) = 55\, \text{h}; E_a = 1.1\, \text{eV}\)
 • reverse annealing: \(\tau(20^\circ C) = 475\, \text{d}; E_a = 1.3\, \text{eV}\)

• Morale: always keep detector cold!
Bulk Damage: Leakage Current

- Leakage (reverse bias) current consequence of generation by mid-gap level(s) in SCR
- Strictly scales with NIEL (material, particles)
 - in fact used to measure Φ_{eq}!
- Annealing reveals many components
 - most relevant component
 - $\tau \approx 10 \text{ d}, E_a = 1.1 \text{ eV}$
 - slow annealing afterwards
- $\alpha_{80\text{min},60^\circ\text{C}} \approx \alpha_\infty \approx 4 \times 10^{-17} \text{ A/cm}^3$
 - @20°C, scaling to other T
 - \simdoubles every 8°C

\[\alpha(T) \propto T^2 \exp\left(-\frac{E_g}{2k_B T}\right) \]

- fitted $E_g \approx 1.2 \text{ eV}$ instead of 1.12 eV
 - level(s) not exactly mid-gap
Measurement: Charge Collection

- Signal mostly measured as time integral – charge
- Simplest: ^{90}Sr (β~MIP), pad detector, CSA, shaper ($\tau \sim 25$ ns) -> signal
 - signal spectrum: Landau×Gaussian (noise)
- Signal MPV (or mean) vs. bias voltage
 - absolute calibration difficult
 - normalize to non-irradiated, fully depleted detector
 - Charge Collection Efficiency - CCE
- Expect charge collection from SCR
 - indeed observed in non-irradiated
 - for irradiated $CCE(V)$ linear ?!
 - ENB highly resistive, $E_w = 1/D$ not $1/w$
 - Charge drifts w only: CCE reduced by w/D
- For pixels, strips, two cases
 - SCR grows from collecting electrode
 - e.g $p+$ strips on n-bulk before type inversion
 - smaller correction from E_w since E_w peaked at pixel strip, $CCE(V)$ therefore closer to $v(V)$
 - after inversion SCR growth from backplane
 - need $V > V_{FD}$ for ~any CCE, otherwise charge distributed over many strips/pixels

\[
CCE \propto w \propto \sqrt{\frac{V}{V_{FD}}}
\]
\[
CCE_{irr} \propto \frac{w \cdot w}{D} \propto \frac{V}{V_{FD}}
\]
Transient Current Technique

- **Transient Current Technique (TCT)**
 - Generate charges by fast (<300 ps) laser pulse
 - Measure induced signal $I(t)$ with fast amplifier with sub-ns rise-time

- **Laser**
 - Red laser with ~ 3 μm penetration on top surface
 - Need opening in metallization
 - Generates induced currents for
 - Electrons (p+-side injection)
 - Holes (n+ side injection)
 - IR laser (1060 nm), penetration \simmm
 - Ionizes through detector; \simMIP equivalent
 - From top or side – Edge-TCT
 - Detector edge polished
 - Focus laser, move detector to scan
 - Maps detector response in (x,y,z)

- **Analyze $I(t)$ to extract detector parameters**
Bulk Damage: Trapping

- Defects capture charge carriers

\[Q(t) = Q_0 \exp\left(- \frac{t}{\tau}\right) \]

\[\frac{1}{\tau} = \frac{v_{th}}{\langle l \rangle} = v_{th} \sum_t \sigma_t N_t = v_{th} \sum_t \sigma_t g_t \cdot \Phi = \beta \cdot \Phi \]

- Visible in TCT as charge deficit above \(V_{FD} \)
- Can correct \(I(t) \) with \(\exp(\frac{t}{\tau}) \) until charge flat for all \(V > V_{FD} \)
 - Charge correction method
- Measured \(1/\tau(\Phi) \) linear up to \(2 \times 10^{14} \) \(n_{eq}/cm^2 \)
 - \(\beta \) values around \(5 \times 10^{-16} \) \(cm^2/ns \)
 - \(\tau \approx 20 \) ns@\(10^{14} \) \(n_{eq}/cm^2 \)
 - trapping important (limiting) beyond \(10^{15} \) \(n_{eq}/cm^2 \)
 - holes > electrons by \(\sim 40 \% \)
 - more after annealing
 - charged hadrons > neutrons
 - NIEL violation at 30 \% level
Résumé for LHC

• Operate Si at ~500 V
 – copes with V_{FD} up to $\sim 6 \times 10^{14} \text{n}_{\text{eq}}/\text{cm}^2$
 • strips ($< 2 \times 10^{14} \text{n}_{\text{eq}}/\text{cm}^2$) safe with $p+n$ (n^+n too expensive)
 • pixel (inner $10^{15} \text{n}_{\text{eq}}/\text{cm}^2$) go n^+n and 700 V

• At the limit of the then technology
 – previous generation of Si operated at ≤ 100 V!
 – push on sensor design and manufacturing
 – even services non-trivial (Ta caps for > 300 V!)

• So far, big success in operation!
 • caution, was planned for 730/fb, we are at ~ 100/fb now
HL-LHC Radiation Field

- Maximum fluences
 - pixels \(\sim 2 \times 10^{16} \text{n}_{eq}/\text{cm}^2 \)
 - strips \(\sim 10^{15} \text{n}_{eq}/\text{cm}^2 \)
 - \(\sim \) charged hadrons for pixels, up to 80% neutrons for (outer) strips

- TID up to 10 MGy

- About 20x planned for LHC

Table: 1 MeV neutron equivalent fluence

<table>
<thead>
<tr>
<th>Location</th>
<th>1 MeV n. eq. (cm(^{-2}))</th>
<th>Protons</th>
<th>Pions</th>
<th>Neutrons</th>
<th>Dose (kGy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r=28 cm; z=0 cm)</td>
<td>6.9e+14</td>
<td>7.8%</td>
<td>38.5%</td>
<td>53.7%</td>
<td>329</td>
</tr>
<tr>
<td>(r=28 cm; z=117 cm)</td>
<td>8.9e+14</td>
<td>13%</td>
<td>31.8%</td>
<td>55.2%</td>
<td>418</td>
</tr>
<tr>
<td>LS (r=100 cm; z=0 cm)</td>
<td>1.7e+14</td>
<td>6%</td>
<td>13%</td>
<td>61%</td>
<td>34</td>
</tr>
<tr>
<td>LS (r=100 cm; z=117 cm)</td>
<td>2.1e+14</td>
<td>6.2%</td>
<td>10%</td>
<td>83.8%</td>
<td>38</td>
</tr>
</tbody>
</table>

Diagram: 1 MeV neutron equivalent fluence over ATLAS ITK 3000/fb.
• Linear extrapolation from low fluence data
 – Current: $I_{\text{leak}} = 0.8 \text{ A/cm}^3 \ @ 20^\circ\text{C}$
 • 0.4 mA/cm^2 for 300 μm thick detector @ -20°C
 – Depletion: $N_{\text{eff}} \approx 4 \times 10^{14} \text{ cm}^{-3}$
 • $FDV \approx 30 \text{ kV}$
 – Trapping $\tau_{\text{eff}} \approx 1/8 \text{ ns} = 125 \text{ ps}$
 • $Q \approx Q_0/d \nu_{\text{sat}} \tau_{\text{eff}} \approx 80 \text{ e/}\mu\text{m} 200 \mu\text{m/ns} 1/8 \text{ ns} = 2000 \text{ e in very high electric field (>>1 V/}\mu\text{m)}$

• Looks much like Mission Impossible (part n...)
• Need a(?) miracle... better a revolution or two...
Pre-Revolution: Material Engineering

• Major achievement of ROSE (RD-48)
 – oxygenated FZ silicon (DOFZ) exhibits ~3x smaller g_c for charged hadrons
 • benefits also in reverse annealing
 – unlucky enough, no effect with neutron irradiation
 • [O] too small in clusters?
 – no effect on trapping
• Used by LHC pixel detectors
 – neutron share small, trapping not yet a big issue

• Trials with many more materials
 – MCz exhibited some benefit, but not conclusive
1st Revolution: Beef up Voltage

- Rather obvious, but definitely not trivial
 - detectors break down
 - engineering needs special care in components, materials, clearances, services...
 - does not scale linearly with V
 - ATLAS SCT started with 350, then 500 V
 - services foresightedly designed to latter value
 - ATLAS Pixel went to 700 V
 - IBL (Phase-0 pixel upgrade) extended to 1000 V
- R&D now routinely use V to 1000 (even 2000) V
• For segmented detectors with trapping e collection (\(n^+\) electrodes) is better
 – faster drift (\(\mu_e \approx 3.\mu_h\) but \(v_{sat,h} \approx \frac{3}{4}.v_{sat,e}\))
 – less trapping
 – high electric field coincident with high weighting field after inversion
• Expense of \(n^+n\) overcome by turning to \(n^+p\)
 – shallow dopant benefit hardly noticeable
 – no inversion, if that matters...
• A major surprise (beneficial !) came later...
3rd Revolution: Charge Multiplication

- Used in APD for ages, but never considered in segmented Si detectors
 - remember, electric fields used to be $E_{\text{max}} < 1 \text{ V/\mu m}$!
 - and we were collecting holes...

- Results with n^+p looked encouraging
 - CCE of $\geq 50 \%$ @ $3 \times 10^{15} \text{ n}_{eq}/\text{cm}^2$
 - $CCE \sim \text{linear in } V$

- Then somebody decided to turn the bias voltage knob
 - $CCE > 100 \%$ up to $3 \times 10^{15} \text{ n}_{eq}/\text{cm}^2$
 - CM “discovered” in Si sensors
• Multiplication is textbook physics
 – e.g. S.M. Sze, Physics of Semiconductor Devices, Wiley, New York, 1981
 - Ch 1.6.4 High-Field Property
 – Velocity saturation, impact ionization
 - Ch 2.5.3 Avalanche Multiplication
 – Junction break-down
• Measured impact ionization
 – Electrons create 1 pair in 10 µm at $E \sim 20$ V/µm (100 µm at 14 V/µm), holes need $E \sim 40$ V/µm
 – Holes need ~1 mm for pair creation at $E \sim 20$ V/µm
 • Neglect hole multiplication in signal creation altogether
 • Need to invoke hole multiplication for junction breakdown
• $\alpha_e >> \alpha_h$ - Nature gentle to us (in silicon)
 – Large range in E where electrons multiply without inducing breakdown
 – But beware of (too) high electric fields!

\[\alpha_{e,h}(E) = \alpha_{e,h}^\infty e^{-b_{e,h}/E} \]

\[
\int_0^w dx \alpha_e(x) e^{-x} = 1
\]
Breakdown condition, can swap α_e with α_h
• Generation current accumulates, increasing p and n in opposite directions through SCR

• e and h trap, contributing to space charge
 – new (dynamic) configuration
 – observed as “double junction” in e-TCT
 • modelled also in TCAD
 – most prominent in p irradiated Si around $10^{15} \text{n}_{eq}/\text{cm}^2$ – E nearly flat, good for CCE
 – much less effect after n irradiation
• *n*-irradiated Si behaves almost “by the book”
 – no [O] benefit
 – little double junction
 – good SCR/ENB separation
• But at extreme fluences there appears a substantial field in ENB
 – E_{ENB} up to 3 V/μm!
• Interpreted as Ohmic $E=j.\rho$
 – j generated in SCR
 – ρ must be larger than ρ_i
 – possible because of 6x smaller mobility, also take $\rho_i(E)$, not $\rho_i(0)$
Nothing is Linear

- Linear behaviour is just the first term in Taylor series
 - sooner or later expected to break down
 - saturation – lower than linear prediction
 - breakdown – higher than linear prediction
- So far saturation effects observed in
 - leakage current (maybe just SCR effect...)
 - trapping
 - g_c for neutrons
- Looks like the odds are on our side
 - so far?
Where are we now?

• We are confident to build Si trackers for HL-LHC
 – TDR’s in writing (ATLAS Strip TDR approved)
 – some sensor options (can) remain open (3-D, CMOS)
 – inner Pixel part exchangeable (headroom for sensors, electronics (design) issue above 5 MGy)

• Many other ingenious and important developments I had no time to elaborate on
 – sensor technologies
 • 3-D detectors, depleted CMOS, thin detectors, LGAD’s, ...
 – characterization
 • microscopic defects, device simulation, TPA TCT, test-beams, ...
 – surface damage
 • electronics, sensor design
 – single event effects
Can Si Serve in FCC

- Maximum radiation in tracker $6 \times 10^{17} \, n_{eq}/cm^2$ and 500 MGy
- From first sight this looks plain *impossible*
 - except for exchanging inner tracker each ~month
 - robots!
- But remember
 - HL-LHC ($2 \times 10^{16} \, n_{eq}/cm^2$ and 10 MGy) looked *impossible* from LHC perspective
 - even LHC looked *impossible* from LEP perspective
Measurements up to $1.6 \times 10^{17} \text{n}_{\text{eq}}/\text{cm}^2$

- Measurement with ganged $n^+ p$ strip (spaghetti) detectors
 - Above $3 \times 10^{15} \text{n}_{\text{eq}}/\text{cm}^2$ linear $\text{CCE}(V_{\text{bias}})$
 - Power law scaling with fluence, $b \approx -\frac{2}{3}$
 - Leakage current “saturating”

$$Q_{\text{MPV}}(V, \Phi) = k \cdot (\Phi/10^{15} \text{n}_{\text{eq}}/\text{cm}^2)^b \cdot V$$

$k = 26.4 \text{e}_0/\text{V}$

$b = -0.683$

From: G. Kramberger et al., *JINST 8 P08004 (2013).*
Summary

• Radiation hardness of Si has been reviewed with focus on bulk damage in Si
• Road travelled from LEP over LHC to HL-LHC outlined
• The paramount difficulties successfully surmounted from LHC to HL-LHC awaken aspirations for Si at FCC
• Pions, neutrons, hadrons
 – Pions, hadrons peak at ~5 GeV
 • 90% above 500 MeV
 – Neutrons flat to ~30 GeV
Facilities Matching

- **IRRAD2 (PS) protons**
 - A bit on the high side
 - ~same damage expected
 - KIT & UoB well below

- **JSI neutrons**
 - Cover spectrum up to 5 MeV

- **Not really ideal, but that’s what we have**

- **Believe in NIEL scaling?**
 - violations observed in Si
 - KIT & UoB scaling verified, but surprises possible
Weighting field

• Weighting field sharply peaked at strips, pixels (3-D!)
• Will affect signal when $v \tau_{\text{eff}} \ll d$
 – $v_{\text{sat}} \tau_e \approx 30\mu m @ 10^{16}$
 ➢ Thin detectors
➢ Inclined tracks
 – Skewed distributions
 – Algorithms ?
➢ Non-homogeneous detectors ?

Top 25% yield
80% of signal,
top 10% give 50%

<table>
<thead>
<tr>
<th>U_w</th>
<th>x</th>
<th>Δx</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>145</td>
<td>145</td>
</tr>
<tr>
<td>0.2</td>
<td>208</td>
<td>63</td>
</tr>
<tr>
<td>0.3</td>
<td>234</td>
<td>26</td>
</tr>
<tr>
<td>0.4</td>
<td>247</td>
<td>14</td>
</tr>
<tr>
<td>0.5</td>
<td>256</td>
<td>9</td>
</tr>
<tr>
<td>0.6</td>
<td>263</td>
<td>7</td>
</tr>
<tr>
<td>0.7</td>
<td>268</td>
<td>5</td>
</tr>
<tr>
<td>0.8</td>
<td>272</td>
<td>4</td>
</tr>
<tr>
<td>0.9</td>
<td>276</td>
<td>4</td>
</tr>
<tr>
<td>1.0</td>
<td>280</td>
<td>4</td>
</tr>
</tbody>
</table>

M.Mikuž: Radiation Damage in Si
Thin detectors

- Seen to provide more signal after heavy irradiation at “low” V
 - Less charge sharing for inclined tracks
- But beware:
 - Less ionization signal, more fluctuations
 - Additional fluctuations from trapping, CM
 - Rely on Central Limit Theorem?
 - Best measure $MPV \rightarrow S/N \rightarrow$ spectrum on actual device in test beam
- Efficiency vs. noise occupancy as function of threshold - ultimate info for (binary) tracking

\[FWHM \geq 4\xi = 2K \cdot (Z/A) \cdot (x/\beta^2) \text{ MeV} \]
Linear $CCE(V)$?

- What could be linear
 - SCR governed $CCE(V)$ after irradiation (VV), highly resistive ENB (VV), without trapping
 - Trapping dominated with non-saturated drift velocity

- What is *not* linear
 - velocity saturation
 - charge multiplication
 - double junction
 - field in ENB
 - ...

- Just a nice coincidence or some physics behind?
 - look *into* silicon to search for an answer
Edge TCT

- **Edge-TCT**
 - Generate charges by edge-on IR laser perpendicular to strips, detector edge polished
 - Focus laser under the strip to be measured, move detector to scan
 - Measure induced signal with fast amplifier with sub-ns rise-time (Transient Current Technique)
 - Laser beam width 8 µm FWHM under the chosen strip, fast (40 ps) and powerful laser

 - Caveat – injecting charge under all strips effectively results in constant weighting (albeit not electric !) field

\[
\begin{align*}
I(y,t) &= I_e(y,t) + I_h(y,t) \\sim e_0 A N_e h v_e(y) + v_h(y) W
\end{align*}
\]

\[
I(y,t) \sim e_0 A N_e h v_e(y) + v_h(y) W
\]

Figure 1. Schematic view of the Edge-TCT technique.

Figure 2. Induced current pulses at \(y = 50 \mu m\) for different bias voltages in a non-irradiated detector.

Figure 3. Velocity profiles of neutron-irradiated detector to different fluences.
Electric Field Measurement

- Initial signal proportional to velocity sum at given detector depth
- Caveats for field extraction
 - Transfer function of electronics smears out signal, snapshot taken at ~600 ps
 - Problematic with heavy trapping
 - Electrons with \(v_{sat} \) hit electrode in 500 ps
 - Mobility depends on \(E \)
 - \(v \) saturates for \(E >> 1V/\mu m \)

\[
I(t = 0) = q \cdot \vec{v} \cdot \vec{E}_w =
= N_{e-h} e_0 \cdot (v_e + v_h) / d =
= N_{e-h} e_0 \cdot (\mu_e + \mu_h) \cdot E(x) / d
\]

![Graphs showing electric field vs. velocity for electrons and holes.](image1)

Measured signal non-irradiated 50 \(\mu m \) from strip

- \(V_{bias}=500 \text{ V} \)
- \(V_{bias}=400 \text{ V} \)
- \(V_{bias}=300 \text{ V} \)
- \(V_{bias}=200 \text{ V} \)
- \(V_{bias}=100 \text{ V} \)
- \(V_{bias}=0 \text{ V} \)
Selected Results from Neutrons

- Hamamatsu ATL07 n⁺ mini-strip, FZ p-type, neutron irradiated at JSI TRIGA reactor
 - In steps up to $10^{16} \text{n}_{eq}/\text{cm}^2$

- Very instructive regarding qualitative electric field shape
 - Non-irradiated “by the book” for abrupt junction n⁺p diode
 - SCR and ENB nicely separated, small double junction near backplane
 - Medium fluence ($\Phi=10^{15}$ neutrons): some surprise
 - Smaller space charge than expected in SCR, some field in “ENB”
 - Large fluence ($\Phi=10^{16}$): full of surprises
 - Still lower space charge, sizeable field in “ENB”
 - Charge multiplication (CM) additional trouble for interpretation at large V

- Nice, but let’s get quantitative!

Published in:
G. Kramberger et al., JINST 9 P10016(2014).

STREAM WS, CERN, 6/11/2017
M. Mikuž: Radiation Damage in Si
Extending the Reach

• In 2014 added 5×10^{16} and 10^{17} n$_{eq}$/cm2 measurements of the same detector
 – 10^{16} of this fluence fully annealed, the rest 80 min @ 60°C

• Intrinsic feature – signal oscillations
 – period $\sim 5/4$ ns
 – LRC (C~ 2pf \Rightarrow L~ 20 nH ~ 1cm of wire)
 – velocity (slope) and charge (integral) yield consistent results
 – should be, as $Q \approx Q_0 \nu_{sum} \tau_{eff}/d$

☹ Cannot use $I(t)$ to measure trapping...
... shall take a closer look
Absolute Field Measurement

- Solution: concurrent forward bias v_{sum} measurements
 - Ohmic behaviour with some linear (field) dependence
 - constant (positive) space charge
 - can use $\int E(y)\,dy = \bar{E} d = V$ to pin down field scale
 - corrections from $v(E)$ non-linearity small
- Use same scale for reverse bias!
- FW measurements up to 700 V
 - know E scale up to 2.33 V/μm
 - can reveal $v(E)$ dependence
Proton Irradiations

- 5 sample pairs of ATL12 mini-strips irradiated at CERN PS during summer 2015
 - got 0.5, 1.0, 2.9, 11, 28e15 protons/cm2, no scanning
 - NIEL hardness factor 0.62
 - thanks to CERN IRRAD team
 - took 41 PS days to reach the highest fluence

- Covers HL-LHC tracker range well
- Samples back in September 15, 2 per fluence investigated by E-TCT for all fluences
 - concurrent forward and reverse bias measurements
Mobility Considerations FW bias

- For forward bias can extract \(v(E) \) up to a scale factor
- Observe less saturation than predicted
- Model with

\[
v_{\text{sum}}(E) = \frac{\mu_{0,e} E}{1 + \frac{\mu_{0,e} E}{v_{e,\text{sat}}}} + \frac{\mu_{0,h} E}{1 + \frac{\mu_{0,h} E}{v_{h,\text{sat}}}}
\]

- keep saturation velocities at nominal values @-20°C (\(v_{e,\text{sat}} = 107 \, \mu\text{m/ns} \); \(v_{h,\text{sat}} = 83 \, \mu\text{m/ns} \))
- float (common) zero field mobility degradation
- fit \(v(E) \) for \(\phi_n \geq 5 \times 10^{15} \) and \(\phi_p \geq 3 \times 10^{15} \)

n.b. FW profiles less uniform for lower fluences and for protons, but departures from average field still small, corrections \(O(\%) \)
Mobility Fits

- Data follow the model perfectly
 - μ_0 degradation the only free parameter, scale fixed by $v_{\text{sum,sat}}$
 - although E range limited, $v_{\text{sum,max}}$ still $> 1/3$ of $v_{\text{sum,sat}}$
Mobility Results

- Fit to $\nu_e + \nu_h$ with common mobility degradation factor
 - factor of 2 at 10^{16} n_{eq}/cm^2
 - factor of 6 at 10^{17} n_{eq}/cm^2
 - need $2x/6x$ higher E to saturate ν

<table>
<thead>
<tr>
<th>Φn</th>
<th>$\mu_{0,sum}$</th>
<th>Φp</th>
<th>$\mu_{0,sum}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[10^{15} n_{eq}/cm^2]$</td>
<td>$[cm^2/Vs]$</td>
<td>$[10^{15} n_{eq}/cm^2]$</td>
<td>$[cm^2/Vs]$</td>
</tr>
<tr>
<td>non-irr (model)</td>
<td>2680</td>
<td>1.6</td>
<td>2063± 188</td>
</tr>
<tr>
<td>5</td>
<td>1661 ± 134</td>
<td>1.6</td>
<td>2063± 188</td>
</tr>
<tr>
<td>10</td>
<td>1238 ± 131</td>
<td>6.1</td>
<td>1337± 47</td>
</tr>
<tr>
<td>50</td>
<td>555 ± 32</td>
<td>15.4</td>
<td>817± 42</td>
</tr>
<tr>
<td>100</td>
<td>407 ± 40</td>
<td>T=-20°C</td>
<td></td>
</tr>
</tbody>
</table>
Mobility Analysis

- Mobility governed by hard scattering on acoustic phonons and traps
 \[\frac{1}{\tau} = \frac{1}{\tau_{ph}} + \frac{1}{\tau_{trap}} \]

- Fit mobility dependence on fluence with a power law
 \[\mu_{0,\text{sum}}(\Phi) = \frac{\mu_{0,\text{sum,phonon}}}{1 + \left(\frac{\Phi}{\Phi^{1/2}} \right)^\alpha} \]

- Fits perfectly, value of \(\alpha\) close to linear
- At same NIEL, mobility decrease worse for protons
 - NIEL violation? Large errors?

<table>
<thead>
<tr>
<th>Irradiation particle</th>
<th>(\alpha)</th>
<th>(\sigma_\alpha)</th>
<th>(\Phi^{1/2}/10^{15})</th>
<th>(\sigma_{\Phi^{1/2}}/10^{15})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactor neutrons</td>
<td>-0.74</td>
<td>0.07</td>
<td>9.8</td>
<td>1.7</td>
</tr>
<tr>
<td>PS protons</td>
<td>-0.90</td>
<td>0.19</td>
<td>6.1</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Mobility Comparison

- Dependence on shallow dopant concentration
 - Measured in the roaring 60’s
- Characteristic trap concentration $N \sim 10^{17}$ cm$^{-3}$
 - Looks out of reach for typical $g = O(10^{-2})$
- But g refers to $N_{\text{eff}} = |N_a - N_d|$
- While N is more like $N_a + N_d$
 - x-sections for deep and shallow?
- Power law looks compatible: $a \leq 1$
Velocity and Field Profiles

• Knowing $v(E)$ can set scale to velocity profiles
 – assumption: same scale on FW and reverse bias
 • protons: for 5×10^{14} and 10^{15} use same scale, fixed by average field for 5×10^{14} at 1100 V (no good FW data)

• Invert $E(v)$ to get electric field profiles
 – big errors when approaching v_{sat} i.e. at high E
 • exaggerated by CM in high field regions
 • $v > v_{sat}$ not physical, but can be faked by CM
Velocity Profiles Neutrons

$\nu = 190 \, \mu\text{m/ns}$

Velocity profile 5×10^{15}

Velocity profile 1×10^{16}

Velocity profile 5×10^{16}

Velocity profile 1×10^{17}
Current Characteristics

- Smooth behaviour in both directions
 - Highly resistive Si limits FW injection
- Reverse current smaller than predicted by an order of magnitude
- Both currents rising with bias
Reverse Bias Field Profile

- Two distinct regions at high biases
 - Large region from backplane with (small) slope in the field
 - constant (small, negative) space-charge
 - $E = j \cdot \rho$ at junction ? like “ENB” ?
 - indication of thermal (quasi)equilibrium: $np = n_i^2$?
 - thus no current generation ?
 - Small region at junction building up with bias
 - depleted space-charge region ?
 - source of generation current ?
SCR Consistency

- Hard to estimate SCR extent, especially at lower bias and highest fluence
- A crude estimate
 - $5 \times 10^{16} \text{n}_{\text{eq}}/\text{cm}^2$: ~80 µm @ 600 V; ~120 µm @ 1000 V
 - $10^{17} \text{n}_{\text{eq}}/\text{cm}^2$: ~60 µm @ 600 V; ~80 µm @ 1000 V

- Predicted/measured currents
 - $5 \times 10^{16} \text{n}_{\text{eq}}/\text{cm}^2$: 300/300 µA @ 600 V; 400/500 µA @ 1000 V
 - $10^{17} \text{n}_{\text{eq}}/\text{cm}^2$: 400/300 µA @ 600 V; 500/600 µA @ 1000 V

- Reasonable agreement with current generated exclusively in SCR
 - n.b. - current “saturation” observed @1000V in *JINST 8 P08004 (2013)*

- Acceptor introduction rates: $g_c \approx 6/4 \times 10^{-4} \text{ cm}^{-1}$
 - substantial part (up to 80 %) of voltage drop “spent” in “ENB”
 - matches well data in *JINST 9 P10016(2014)* (up to 10^{16})
“ENB” Consistency

• Space charge in “ENB” rising with bias, e.g. for $10^{17} \text{n}_{\text{eq}}/\text{cm}^2$
 – $1.6 \times 10^{11} @ 100 \text{ V}$, $9.2 \times 10^{11} \text{ cm}^{-3} @ 500 \text{ V}$
 – c.f. $\sim 4 \times 10^{13} \text{ cm}^{-3}$ in SCR
 – negative space charge, like in SCR

• Resistivity from $\rho = j/E @ 100 \text{ V}$
 – maximum $\rho(p) \approx 2.8 \times 10^7 \text{ } \Omega \text{cm}$ using nominal mobilities @ $p \sim 2 \times 10^8 \text{ cm}^{-3}$
 • all measured values exceed this limit
 – compatible with measured mobility sum and $p \sim O(10^9) \text{ cm}^{-3}$

<table>
<thead>
<tr>
<th>ϕ</th>
<th>ρ</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[n_{\text{eq}}/\text{cm}^2]$</td>
<td>$[10^7 \Omega \text{cm}]$</td>
<td>$[10^9 \text{ cm}^{-3}]$</td>
</tr>
<tr>
<td>1×10^{16}</td>
<td>3.3</td>
<td>0.5</td>
</tr>
<tr>
<td>5×10^{16}</td>
<td>3.0</td>
<td>1.5</td>
</tr>
<tr>
<td>1×10^{17}</td>
<td>2.8</td>
<td>2.1</td>
</tr>
</tbody>
</table>
Trapping Considerations

- Extrapolation from low fluence data with $\theta_{e,h}(-20^\circ C)=4.4,5.8 \times 10^{-16} \text{ cm}^2/\text{ns}; \ 1/\tau=\theta\Phi$

<table>
<thead>
<tr>
<th>Φ [1e15]</th>
<th>5</th>
<th>10</th>
<th>50</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ [ps]</td>
<td>400</td>
<td>200</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>$mfp@v_{sat}$ [\mu m]</td>
<td>95</td>
<td>48</td>
<td>9.5</td>
<td>4.8</td>
</tr>
<tr>
<td>MPV [e$_0$]</td>
<td>7600</td>
<td>3800</td>
<td>760</td>
<td>380</td>
</tr>
<tr>
<td>$MPV@1000$ V</td>
<td>8900</td>
<td>5500</td>
<td>1800</td>
<td>1150</td>
</tr>
<tr>
<td>CCD_{1000} V [\mu m]</td>
<td>110</td>
<td>70</td>
<td>23</td>
<td>14</td>
</tr>
</tbody>
</table>

- Measured data exceeds (by far) linear extrapolation of trapping
 - n.b.1: $E\sim3$ V/\mu m by far not enough to saturate velocity
 - n.b.2: little sign of CM at highest fluence
More Considerations

• More realistic: take v_{sum} at average $E = 3.3 \text{ V/}\mu\text{m}$

<table>
<thead>
<tr>
<th>Φ [1e15]</th>
<th>5</th>
<th>10</th>
<th>50</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>$v_{sum}(3.3 \text{ V/}\mu\text{m})$</td>
<td>137</td>
<td>126</td>
<td>90</td>
<td>77</td>
</tr>
<tr>
<td>CCD_{1000v} [μm]</td>
<td>110</td>
<td>70</td>
<td>23</td>
<td>14</td>
</tr>
<tr>
<td>$\tau \approx CCD/v$ [ps]</td>
<td>800</td>
<td>560</td>
<td>260</td>
<td>180</td>
</tr>
<tr>
<td>τ_{ext} [ps]</td>
<td>400</td>
<td>200</td>
<td>40</td>
<td>20</td>
</tr>
</tbody>
</table>

• Implies factor of 6-9 less trapping at highest fluences
 – lowest fluence still x2 from extrapolation
 – weak dependence on fluence as anticipated
 – CM would effectively shorten trapping times
 – not good when large E variations ($v(E)$ saturates)
 – not good when $CCD \approx$ thickness (less signal at same τ)
Exploiting TCT Waveforms

- Waveforms at $y=100 \, \mu m$, 800 V, 5×10^{16} and 10^{17}
 - $E \approx 3 \, V/\mu m$, CCD/2 implies signal within $\sim 10 \, \mu m$ or <0.2 ns
 - the rest you see is the transfer function of the system
- Still distinct signals from the two fluences
 - treat 10^{17} waveform as transfer function of the system
 - convolute with $e^{-t/\tau}$ to match 5×10^{16} response
 - $\tau = 0.2$ ns provides a good match
- In fact, measure $\sim \Delta \tau$, as “transfer” already convoluted with $e^{-t/\tau(1e17)}$!

\[\tau = 0.2 \, \text{ns} \]
Waveforms: How sensitive?

- $\Delta \tau = 0.2$ ns certainly best fit, 0.1 too narrow, 0.3 too broad
- precision ~ 50 ps
Trapping – position dependence?

- Waveforms plotted every 50 um in detector depth for reverse bias at 1000 V
- Forward bias in middle of detector added at 600 V
- Very little, if any, wf dependence on position observed
- Trapping not position (even not bias) dependent !?
Velocity Profiles Protons

$\nu = 190 \mu m/\text{ns}$

Same scale as for neutrons
Field Profiles Protons

Smaller peak fields than for neutrons
Scale 0-7 V/μm