
Machine Learnig – Part 3

Nikita Kazeev123

1National Research University Higher School of Economics (HSE) 2Yandex 3Yandex School of Data Analysis



Let’s get acquainted

› Who is (or in near future will) be doing a physics analysis?

› Who has fitted a classifier?

› Who has computed cross-validation error of a classifier?

› Who has trained a deepNN?

› Who has trained a convolutional NN?

› Who has trained a LSTMRNN?

Nikita Kazeev 2



Let’s get acquainted

› Who is (or in near future will) be doing a physics analysis?

› Who has fitted a classifier?

› Who has computed cross-validation error of a classifier?

› Who has trained a deepNN?

› Who has trained a convolutional NN?

› Who has trained a LSTMRNN?

Nikita Kazeev 2



Let’s get acquainted

› Who is (or in near future will) be doing a physics analysis?

› Who has fitted a classifier?

› Who has computed cross-validation error of a classifier?

› Who has trained a deepNN?

› Who has trained a convolutional NN?

› Who has trained a LSTMRNN?

Nikita Kazeev 2



Let’s get acquainted

› Who is (or in near future will) be doing a physics analysis?

› Who has fitted a classifier?

› Who has computed cross-validation error of a classifier?

› Who has trained a deepNN?

› Who has trained a convolutional NN?

› Who has trained a LSTMRNN?

Nikita Kazeev 2



Let’s get acquainted

› Who is (or in near future will) be doing a physics analysis?

› Who has fitted a classifier?

› Who has computed cross-validation error of a classifier?

› Who has trained a deepNN?

› Who has trained a convolutional NN?

› Who has trained a LSTMRNN?

Nikita Kazeev 2



Let’s get acquainted

› Who is (or in near future will) be doing a physics analysis?

› Who has fitted a classifier?

› Who has computed cross-validation error of a classifier?

› Who has trained a deepNN?

› Who has trained a convolutional NN?

› Who has trained a LSTMRNN?

Nikita Kazeev 2



General remarks

› 8 hours is not nearly enough

› Just enough theory to understand what’s going on

› Just enough practice to use out-of-shelf state-of-the-art solutions (I really love

those of-in-between words)

› Encourage to attend our summer school

› Compete at Kaggle

Nikita Kazeev 3

https://indico.cern.ch/event/613571/
https://kaggle.com


General remarks

› 8 hours is not nearly enough

› Just enough theory to understand what’s going on

› Just enough practice to use out-of-shelf state-of-the-art solutions (I really love

those of-in-between words)

› Encourage to attend our summer school

› Compete at Kaggle

Nikita Kazeev 3

https://indico.cern.ch/event/613571/
https://kaggle.com


General remarks

› 8 hours is not nearly enough

› Just enough theory to understand what’s going on

› Just enough practice to use out-of-shelf state-of-the-art solutions (I really love

those of-in-between words)

› Encourage to attend our summer school

› Compete at Kaggle

Nikita Kazeev 3

https://indico.cern.ch/event/613571/
https://kaggle.com


General remarks

› 8 hours is not nearly enough

› Just enough theory to understand what’s going on

› Just enough practice to use out-of-shelf state-of-the-art solutions (I really love

those of-in-between words)

› Encourage to attend our summer school

› Compete at Kaggle

Nikita Kazeev 3

https://indico.cern.ch/event/613571/
https://kaggle.com


General remarks

› 8 hours is not nearly enough

› Just enough theory to understand what’s going on

› Just enough practice to use out-of-shelf state-of-the-art solutions (I really love

those of-in-between words)

› Encourage to attend our summer school

› Compete at Kaggle

Nikita Kazeev 3

https://indico.cern.ch/event/613571/
https://kaggle.com


Environment setup

Nikita Kazeev 4



This lecture plan

› Naive boosting for regression

› Gradient boostingmachine

› XGBoost

› Dealing with non-numeric data

› Dealing with overfitting

I’m grateful to Alexei Artemov for hismaterials.

Nikita Kazeev 5



Naive boosting for regression



Boosting for regression

› Consider a regression problem 1
2

∑`
i=1(h(xi)− yi)

2 → min
h

› Search for solution in the form of weak learner composition aN(x) =
∑N

n=1 hn(x)

with weak learners hn ∈ H
› The boosting approach: addweak learners greedily

1. Start with a “trivial” weak learner h0(x) =
1
`

∑`
i=1 yi

2. At step N, compute the residuals

s
(N)
i = yi −

∑N−1
n=1 hn(xi) = yi − aN−1(xi), i = 1, . . . , `

3. Learn the next weak algorithm using

aN(x) := argmin
h∈H

1

2

∑`
i=1(h(xi)− s

(N)
i )2

(this implementationmay be found in, e.g., scikit-learn)

Nikita Kazeev 7



Boosting for regression

› Consider a regression problem 1
2

∑`
i=1(h(xi)− yi)

2 → min
h

› Search for solution in the form of weak learner composition aN(x) =
∑N

n=1 hn(x)

with weak learners hn ∈ H

› The boosting approach: addweak learners greedily

1. Start with a “trivial” weak learner h0(x) =
1
`

∑`
i=1 yi

2. At step N, compute the residuals

s
(N)
i = yi −

∑N−1
n=1 hn(xi) = yi − aN−1(xi), i = 1, . . . , `

3. Learn the next weak algorithm using

aN(x) := argmin
h∈H

1

2

∑`
i=1(h(xi)− s

(N)
i )2

(this implementationmay be found in, e.g., scikit-learn)

Nikita Kazeev 7



Boosting for regression

› Consider a regression problem 1
2

∑`
i=1(h(xi)− yi)

2 → min
h

› Search for solution in the form of weak learner composition aN(x) =
∑N

n=1 hn(x)

with weak learners hn ∈ H
› The boosting approach: addweak learners greedily

1. Start with a “trivial” weak learner h0(x) =
1
`

∑`
i=1 yi

2. At step N, compute the residuals

s
(N)
i = yi −

∑N−1
n=1 hn(xi) = yi − aN−1(xi), i = 1, . . . , `

3. Learn the next weak algorithm using

aN(x) := argmin
h∈H

1

2

∑`
i=1(h(xi)− s

(N)
i )2

(this implementationmay be found in, e.g., scikit-learn)

Nikita Kazeev 7



Boosting for regression

› Consider a regression problem 1
2

∑`
i=1(h(xi)− yi)

2 → min
h

› Search for solution in the form of weak learner composition aN(x) =
∑N

n=1 hn(x)

with weak learners hn ∈ H
› The boosting approach: addweak learners greedily

1. Start with a “trivial” weak learner h0(x) =
1
`

∑`
i=1 yi

2. At step N, compute the residuals

s
(N)
i = yi −

∑N−1
n=1 hn(xi) = yi − aN−1(xi), i = 1, . . . , `

3. Learn the next weak algorithm using

aN(x) := argmin
h∈H

1

2

∑`
i=1(h(xi)− s

(N)
i )2

(this implementationmay be found in, e.g., scikit-learn)
Nikita Kazeev 7



Boosting: an example regression problem

0 2 4 6 8 10
x

−5.0

−2.5

0.0

2.5

5.0

7.5
y

Nikita Kazeev 8



Boosting: an example regression problem

0 2 4 6 8 10
x

−5.0

−2.5

0.0

2.5

5.0

7.5
y
ground truth
RT max_depth=1

Nikita Kazeev 8



Boosting: an example regression problem

0 2 4 6 8 10
x

−5.0

−2.5

0.0

2.5

5.0

7.5
y

RT max_depth=1

Nikita Kazeev 8



Boosting: an example regression problem

0 2 4 6 8 10
x

−2

0

2

4
y

RT max_depth=1

Nikita Kazeev 8



Boosting: an example regression problem

0 2 4 6 8 10
x

−2

0

2

4
y

RT max_depth=1

Nikita Kazeev 8



Boosting: an example regression problem

0 2 4 6 8 10
x

−5.0

−2.5

0.0

2.5

5.0

7.5
y

ground truth
Ensemble of size 3

Nikita Kazeev 8



Gradient boosting



Gradient boosting: motivation

› With aN−1(x) already built, how to find the next γN and hN if∑̀
i=1

L(yi, aN−1(xi) + γh(xi))→ min
γ,h

› Recall: functions decrease in the direction of negative gradient

› View L(y, z) as a function of z (= aN(xi)), execute gradient descent on z

› Search for such s1, . . . , s` that∑̀
i=1

L(yi, aN−1(xi) + si)→ min
s1,...,s`

› Choose si = − ∂L(yi,z)
∂z

∣∣∣
z=aN−1(xi)

, approximate si’s by hN(xi)

Nikita Kazeev 10



Gradient boosting: motivation

› With aN−1(x) already built, how to find the next γN and hN if∑̀
i=1

L(yi, aN−1(xi) + γh(xi))→ min
γ,h

› Recall: functions decrease in the direction of negative gradient

› View L(y, z) as a function of z (= aN(xi)), execute gradient descent on z

› Search for such s1, . . . , s` that∑̀
i=1

L(yi, aN−1(xi) + si)→ min
s1,...,s`

› Choose si = − ∂L(yi,z)
∂z

∣∣∣
z=aN−1(xi)

, approximate si’s by hN(xi)

Nikita Kazeev 10



Gradient boosting: motivation

› With aN−1(x) already built, how to find the next γN and hN if∑̀
i=1

L(yi, aN−1(xi) + γh(xi))→ min
γ,h

› Recall: functions decrease in the direction of negative gradient

› View L(y, z) as a function of z (= aN(xi)), execute gradient descent on z

› Search for such s1, . . . , s` that∑̀
i=1

L(yi, aN−1(xi) + si)→ min
s1,...,s`

› Choose si = − ∂L(yi,z)
∂z

∣∣∣
z=aN−1(xi)

, approximate si’s by hN(xi)

Nikita Kazeev 10



Gradient boosting: motivation

› With aN−1(x) already built, how to find the next γN and hN if∑̀
i=1

L(yi, aN−1(xi) + γh(xi))→ min
γ,h

› Recall: functions decrease in the direction of negative gradient

› View L(y, z) as a function of z (= aN(xi)), execute gradient descent on z

› Search for such s1, . . . , s` that∑̀
i=1

L(yi, aN−1(xi) + si)→ min
s1,...,s`

› Choose si = − ∂L(yi,z)
∂z

∣∣∣
z=aN−1(xi)

, approximate si’s by hN(xi)

Nikita Kazeev 10



Gradient boosting: motivation

› With aN−1(x) already built, how to find the next γN and hN if∑̀
i=1

L(yi, aN−1(xi) + γh(xi))→ min
γ,h

› Recall: functions decrease in the direction of negative gradient

› View L(y, z) as a function of z (= aN(xi)), execute gradient descent on z

› Search for such s1, . . . , s` that∑̀
i=1

L(yi, aN−1(xi) + si)→ min
s1,...,s`

› Choose si = − ∂L(yi,z)
∂z

∣∣∣
z=aN−1(xi)

, approximate si’s by hN(xi)

Nikita Kazeev 10



TheGradient BoostingMachine [Friedman, 2001]

› Input:

› Training set X` = {(xi, yi)}`i=1

› Number of boosting iterations N

› Loss function Q(y, z)with its gradient ∂Q
∂z

› A familyH = {h(x)} ofweak learners and their associated learning procedures
› Additional hyperparameters of weak learners (tree depth, etc.)

› Initialize GBMh0(x) using some simple rule (zero, most popular class, etc.)

› Execute boosting iterations t = 1, . . . ,N (see next slide)

› Compose the final GBM learner: aN(x) =
∑N

t=0 γihi(x)

Nikita Kazeev 11



TheGradient BoostingMachine [Friedman, 2001]

At every iteration:

1. Compute pseudo-residuals: si = − ∂Q(yi,z)
∂z

∣∣∣
z=aN−1(xi)

, i = 1, . . . , `

2. Learn hN(xi) by regressing onto s1, . . . , s`:

hN(x) = argmin
h∈H

∑̀
i=1

(h(xi)− si)
2

3. Find the optimal γN using plain gradient descent:

γN = argmin
γ∈R

∑̀
i=1

Q(yi, aN−1(xi) + γhN(xi))

4. Update the GBMby aN(xi)← aN−1(x) + γNhN(x)

Nikita Kazeev 12



TheGradient BoostingMachine [Friedman, 2001]

At every iteration:

1. Compute pseudo-residuals: si = − ∂Q(yi,z)
∂z

∣∣∣
z=aN−1(xi)

, i = 1, . . . , `

2. Learn hN(xi) by regressing onto s1, . . . , s`:

hN(x) = argmin
h∈H

∑̀
i=1

(h(xi)− si)
2

3. Find the optimal γN using plain gradient descent:

γN = argmin
γ∈R

∑̀
i=1

Q(yi, aN−1(xi) + γhN(xi))

4. Update the GBMby aN(xi)← aN−1(x) + γNhN(x)

Nikita Kazeev 12



TheGradient BoostingMachine [Friedman, 2001]

At every iteration:

1. Compute pseudo-residuals: si = − ∂Q(yi,z)
∂z

∣∣∣
z=aN−1(xi)

, i = 1, . . . , `

2. Learn hN(xi) by regressing onto s1, . . . , s`:

hN(x) = argmin
h∈H

∑̀
i=1

(h(xi)− si)
2

3. Find the optimal γN using plain gradient descent:

γN = argmin
γ∈R

∑̀
i=1

Q(yi, aN−1(xi) + γhN(xi))

4. Update the GBMby aN(xi)← aN−1(x) + γNhN(x)

Nikita Kazeev 12



TheGradient BoostingMachine [Friedman, 2001]

At every iteration:

1. Compute pseudo-residuals: si = − ∂Q(yi,z)
∂z

∣∣∣
z=aN−1(xi)

, i = 1, . . . , `

2. Learn hN(xi) by regressing onto s1, . . . , s`:

hN(x) = argmin
h∈H

∑̀
i=1

(h(xi)− si)
2

3. Find the optimal γN using plain gradient descent:

γN = argmin
γ∈R

∑̀
i=1

Q(yi, aN−1(xi) + γhN(xi))

4. Update the GBMby aN(xi)← aN−1(x) + γNhN(x)

Nikita Kazeev 12



GBM: an example regression problem

› Consider a training set for a X300 = {(xi, yi)}300i=1

where xi ∈ [−5, 5], yi = cos(xi) + εi, εi ∼ N (0, 1/5)

Picture credit: https://habrahabr.ru/company/ods/blog/327250

Nikita Kazeev 13



GBM: an example regression problem

› Pick N = 3 boosting iterations

› Quadratic loss Q(y, z) = (y− z)2

› Gradient of the quadratic loss
∂Q(yi,z)

∂z = (y− z) is just redisuals

› Pick decision trees as weak learners hi(x)

› Set 2 as themaximumdepth for decision trees

Nikita Kazeev 14



GBM: an example regression problem

Nikita Kazeev 15



GBM: an example regression problem

Nikita Kazeev 16



GBM: an interactive demo
http://arogozhnikov.github.io/2016/06/24/gradient_boosting_explained.html

Nikita Kazeev 17

http://arogozhnikov.github.io/2016/06/24/gradient_boosting_explained.html


GBM: an interactive demo
http://arogozhnikov.github.io/2016/07/05/gradient_boosting_playground.html

Nikita Kazeev 18

http://arogozhnikov.github.io/2016/07/05/gradient_boosting_playground.html


XGBoost



ExtremeGradient Boosting

1. Approximate the descent direction constructed using second order derivatives∑̀
i=1

(
−sih(xi) +

1

2
tih

2(xi)
)
→ min

h
, ti =

∂2

∂z2
L(yi, z)

∣∣∣∣
aN−1(xi)

2. Penalize large leaf counts J and large leaf coefficient norm ‖b‖22 =
∑J

j=1 b
2
j∑̀

i=1

(
−sih(xi) +

1

2
tih

2(xi)
)
+ γJ+

λ

2

J∑
j=1

b
2
j → min

h

where b(x) =
∑J

j=1 bj[x ∈ Rj]

Nikita Kazeev 20



ExtremeGradient Boosting

1. Approximate the descent direction constructed using second order derivatives∑̀
i=1

(
−sih(xi) +

1

2
tih

2(xi)
)
→ min

h
, ti =

∂2

∂z2
L(yi, z)

∣∣∣∣
aN−1(xi)

2. Penalize large leaf counts J and large leaf coefficient norm ‖b‖22 =
∑J

j=1 b
2
j∑̀

i=1

(
−sih(xi) +

1

2
tih

2(xi)
)
+ γJ+

λ

2

J∑
j=1

b
2
j → min

h

where b(x) =
∑J

j=1 bj[x ∈ Rj]

Nikita Kazeev 20



ExtremeGradient Boosting

3. Choose split [xj < t] at node R tomaximize

Q = H(R)− H(R`)− H(Rr)→ max,

where the impurity criterion

H(R) = −1

2

 ∑
(ti,si)∈R

sj

2/ ∑
(ti,si)∈R

tj + λ

+ γ

4. The stopping rule: declare the node a leaf if even the best split gives negative Q

Nikita Kazeev 21



ExtremeGradient Boosting

3. Choose split [xj < t] at node R tomaximize

Q = H(R)− H(R`)− H(Rr)→ max,

where the impurity criterion

H(R) = −1

2

 ∑
(ti,si)∈R

sj

2/ ∑
(ti,si)∈R

tj + λ

+ γ

4. The stopping rule: declare the node a leaf if even the best split gives negative Q

Nikita Kazeev 21



Categorical features



Categorical features

Image: www.petsworld.in 23



One-hot encoding

[proton, pion, kaon]→ [[1, 0, 0], [0, 1, 0], [0, 0, 1]]

› Doesn’t scale well with the number of categories

Nikita Kazeev 24



One-hot encoding

[proton, pion, kaon]→ [[1, 0, 0], [0, 1, 0], [0, 0, 1]]

› Doesn’t scale well with the number of categories

Nikita Kazeev 24



CTR (aka click-through ratio)

For each pair

(target_class, categori-

cal_feature_value):

ctri =
countInClass+ prior

totalCount+ 1

› countInClass – number of objects in the i-th class with

the current categorical feature value

› prior – algorithm parameter

› totalCount – total number of objects with the current

categorical feature value

Nikita Kazeev 25



CTR example

fruit target ctr

apple 0 0.625

orange 0 0.25

apple 1 0.625

apple 1 0.625

prior = 0.5

Nikita Kazeev 26



Classes counter

For each pair

(target_class, categori-

cal_feature_value):

counti =
curCount+ prior

totalCount+ 1

› curCount – number of objects with the current

categorical feature value

› prior – algorithm parameter

› totalCount – total number of objects

Nikita Kazeev 27



Counters example

fruit target ctr counter

apple 0 0.625 0.7

orange 0 0.25 0.3

apple 1 0.625 0.7

apple 1 0.625 0.7

prior = 0.5

Nikita Kazeev 28



Meet CatBoost

› Gradient boosting on decision trees

› Categorical features handling (evenmore

advanced than discussed!)

› A novel dynamic boosting scheme (

submitted to NIPS) [I’m a coauthor]

› Released into open source by Yandex

› Used in the LHCb PID

Nikita Kazeev 29

https://arxiv.org/abs/1706.09516
https://github.com/catboost/catboost


Overfitting



GBM: regulization via shrinkage

› For too simple weak learners, the negative gradient is approximated badly =⇒
randomwalk in space of samples

› For too complex weak learners, a few boosting stepsmay be enough for overfitting

› Shrinkage:make shorter steps using a learning rate η ∈ (0, 1]

aN(xi)← aN−1(x) + ηγNhN(x)

(effectively distrust gradient direction estimated via weak learners)

Nikita Kazeev 31



GBM: shrinkage

Figure: High shrinkage Figure: Low shrinkage

Nikita Kazeev 32



GBM: regularization approaches

0 2 4 6 8 10
x

−5.0

−2.5

0.0

2.5

5.0

7.5
y

Nikita Kazeev 33



GBM: regularization approaches

0 2 4 6 8 10
x

−5.0

−2.5

0.0

2.5

5.0

7.5
y

High bias - low variance

Low bias - high variance

ground truth
GBRT max_depth=1

Nikita Kazeev 33



GBM: regularization approaches

0 200 400 600 800 1000
n_estimators

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Er
ro
r

Lowest test error

train-test gap

Test 
Train 

Nikita Kazeev 33



GBM: regularization approaches

0 200 400 600 800 1000
n_estimators

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Er
ro

r

Higher bias
Lower variance

Test 
Train 
Test min_samples_leaf=3
Train min_samples_leaf=3

Nikita Kazeev 33



GBM: regularization approaches

0 200 400 600 800 1000
n_estimators

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Er
ro
r

Requires more trees

Lower test error

Test 
Train 
Test learning_rate=0.1
Train learning_rate=0.1

Nikita Kazeev 33



GBM: regularization approaches

0 200 400 600 800 1000
n_estimators

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Er
ro
r

Even lower test error

Subsample alone does poorly

Test 
Train 
Test subsample=0.5, learning_rate=0.1
Train subsample=0.5, learning_rate=0.1
Test subsample=0.5
Train subsample=0.5

Nikita Kazeev 33



Gradients bias in gradient boosting

› Each subsequent tree is fit to the gradient between the current predictions on train

and the true labels

› The gradient is estimated using themodel fitted on the very dataset used for

training

› The gradients are likely to be overfitted

Nikita Kazeev 34



Gradients bias in gradient boosting

› Each subsequent tree is fit to the gradient between the current predictions on train

and the true labels

› The gradient is estimated using themodel fitted on the very dataset used for

training

› The gradients are likely to be overfitted

Nikita Kazeev 34



Gradients bias in gradient boosting

› Each subsequent tree is fit to the gradient between the current predictions on train

and the true labels

› The gradient is estimated using themodel fitted on the very dataset used for

training

› The gradients are likely to be overfitted

Nikita Kazeev 34



Dynamic boosting

› Order data randomly

› For each elementmaintain prediction based on the previousmodel elements

Nikita Kazeev 35



Dynamic boosting

› Order data randomly

› For each elementmaintain prediction based on the previousmodel elements

Nikita Kazeev 35



Summary [theory]

› Boosting: a general meta-algorithm aimed at composing a strong hypothesis from

multiple weak hypotheses

› Boosting can be applied for arbitrary losses, arbitrary problems (regression,

classification) and over arbitrary weak learners

› The Gradient BoostingMachine: a general approach to boosting adding weak

learners that approximate gradient of the loss function

› AdaBoost: gradient boosting with an exponential loss function resulting in

reweighting training instances when adding weak learners

› XGBoost: gradient boosting with second order optimization, penalized loss and

particular choice of impurity criterion

Nikita Kazeev 36



Summary [practice]

[Disclaimer] Objectively comparing algorithms is hard, but judging from competitions &

industry cases...

› As of 2017 Gradient Boosting and Deep Learning rule

› If you’re using something else, think

› There aremore-or-less equal implementations in H2O, LightGBM, XGBoost

› You’re also invited to try the new catboost [the recommendation is biased,

gradients – not somuch...]

Nikita Kazeev 37

https://github.com/h2oai/h2o-3
https://github.com/Microsoft/LightGBM
https://github.com/dmlc/xgboost


Summary [practice]

[Disclaimer] Objectively comparing algorithms is hard, but judging from competitions &

industry cases...

› As of 2017 Gradient Boosting and Deep Learning rule

› If you’re using something else, think

› There aremore-or-less equal implementations in H2O, LightGBM, XGBoost

› You’re also invited to try the new catboost [the recommendation is biased,

gradients – not somuch...]

Nikita Kazeev 37

https://github.com/h2oai/h2o-3
https://github.com/Microsoft/LightGBM
https://github.com/dmlc/xgboost


Summary [practice]

[Disclaimer] Objectively comparing algorithms is hard, but judging from competitions &

industry cases...

› As of 2017 Gradient Boosting and Deep Learning rule

› If you’re using something else, think

› There aremore-or-less equal implementations in H2O, LightGBM, XGBoost

› You’re also invited to try the new catboost [the recommendation is biased,

gradients – not somuch...]

Nikita Kazeev 37

https://github.com/h2oai/h2o-3
https://github.com/Microsoft/LightGBM
https://github.com/dmlc/xgboost


Contacts
Nikita Kazeev

Researcher

kazeevn@yandex-team.ru

nikita.kazeev.9

38

mailto:kazeevn@yandex-team.ru
https://www.facebook.com/nikita.kazeev.9

	Naive boosting for regression
	Gradient boosting
	XGBoost
	Categorical features
	Overfitting

