
Best practices: the 
theoretical and 

practical 
underpinnings of 

writing code that's 
less bad

Axel Naumann, CERN PH-SFT 
Openlab Summer Student Lectures, 2016-07-28



How To Write 
Bad Code

Axel Naumann, CERN PH-SFT 
Openlab Summer Student Lectures, 2017-08-08



Bugs!
Axel Naumann, CERN PH-SFT 

Openlab Summer Student Lectures, 2017-08-08



<prelude>



Why Axel?

5



Why Axel?

• Because I can write expert-level bad code.

6



Why Axel?

• >10 years of ROOT development: the tool for every 
physicist’s analysis 

• Member of the C++ committee 

• Introduced static analysis tool at CERN

7



Why you?
• Because you have an impact! 

• your code is part of XYZ or on top of XYZ, or 
replaces XYZ 

• you have colleagues, we listen to people with 
ideas! 

• I see lots of coding in your  
future!

8



Practices
• More than one dev or more than one user: need to 

agree on “how” 

• CERN has decades of piles of code, lessons 
learned: 

1. be reasonable! 

2. but enforce! 

3. fix rules early, adapt new ones slowly

9



Best Practices

10



Best Practices
• Don’t follow today’s best Best Practices blindly 

• it will be ridiculed in a year anyway 

• But defining best practices publicly helps new 
contributors integrate quickly 

• See e.g. Bjarne Stroustrup @ CppCon  
http://sched.co/3vVp

11

http://sched.co/3vVp


Motivation
• Simpler, consistent read 

• improved communication with fellow coders 

• less ambiguities means more correct code 

• Less bugs; better maintenance 

• Best practices win against experimental coding

12



</prelude>



Menu Du Jour
• Language 

• Coding convention 

• Interface jargon 

• Change management 

• Multi-platform support 

• Tests: code-correctness, functionality, static analysis, 
performance

14



Disclaimer

• I am not your best practices superhero 

• Focus on C++ 

• experience, usage, need

15



Language Choice



Language Features
• Some languages are better for a given job than 

others 

• close-to-metal performance (C++!) 

• re-use available (library) code instead of coding 
yourself, e.g. networking (plenty), filesystem 
(bash!) 

• resource management, inherent security (Rust!)

17



Available Tooling

• High-level versus low-level (ASICs versus web) 

• Rule of thumb: the lower you go the better tools you 
will want (debugger, perf, tests) 

• Pick the right language given available and needed 
tooling!

18



You are not alone

• “Community” knowledge, now and future: no 
Haskell, please 

• Your knowledge: no COBOL, please 

• Practicality: no assembler, please 

• Interfacing with other code: no Go, please

19



Coding Convention



Coding Convention

• What is this? 
 func(val);

21



Coding Convention
• It’s a counter-example! 
 func(val); 

• func: Member function? Data member / function 
pointer? Some global function pulled in from 
header? 

• val: local variable declared 100 lines up in the 
same function? Or member? Or enum constant? 
And where can I find it’s declaration?

22



Coding Convention

 fFunc(fgVal);  

• It’s ROOT - you can tell from the names! 

• It’s a function call 

• fFunc is a member - so it’s a function pointer! 

• fgVal is a static data member; must be in same 
class (or base)

23



Coding Convention
• Obvious case of improved clarity 

• For APIs, user friendly: 

• get_track(), getTrack(), GetTrack() - or Track()? 

• IDEs can help - but not when reading code! 

• Almost all projects employ it

24



Coding Convention
• Typical current examples for C++: 

• Joint Strike Fighter Air Vehicle C++ Coding 
Standards 

• MISRA C++ 

• Both absurd for reasonable environments 

• Both have very reasonable ingredients: pick yours!

25



Coding Convention
• Enforcing needs checkers 

• Non-trivial; checker must understand C++: what is 
a function, what is a member etc 

• Many C-coding convention checkers (indentation!), 
few C++, even less open source 

• clang is becoming a reasonable alternative

26



Interface Jargon



Interface Jargon

28



Interface Jargon
• Consistency - we know that already 

• Safe code through good APIs! 

• unique_ptr / shared_ptr instead of Type* where 
ownership is managed; never use “new Type()”, 
“delete var” 

• document also parameter pre- and post-
condition: arg1 must be != 0; arg2 will contain…

29



Interface Jargon
• Maintain common idioms throughout API; example 

C++ std library: 

• iterators; functor; make_XYZ; allocator etc 

• Don’t screw with your users 

• if interface looks like A, don’t make it do B even if 
it’s better for you. Change the interface in a 
backward-incompatible way instead.

30



Concurrency Support
Distinguish 

• code starts threads to compute faster 
[multithreaded] 

from 
• code does support being called concurrently 

(thread safety) 
from 

• code does operations on multiple values 
(vectorization support) 

31



Thread Safety
• Different types 

• function can be used on same object in multiple, 
concurrent threads without side-effects [thread safe] 

• function can be used on different objects in multiple, 
concurrent threads without side-effects (no 
unsync’ed statics) [conditionally safe] 

• must be locked when accessed through multiple 
threads [not thread safe]

32



Threading Support
• All kinds need to be clearly documented, thread-

safe part of API needs to be visible 

• Common contract nowadays: 

• const API means it’s conditionally safe: no 
unlocked mutables! no caches! no hidden state 
changes! 

• no static variables (without locks)! State is 
passed as arguments

33



Threading Support
• Thus threading support is to some extent interface 

jargon (plus good design) 

• This is work in progress; has changed rather 
recently 

• expect further changes; constexpr / pure 
functions might play a bigger role soon 

• exposing to >64 threads might again change 
requirements (Amdahl’s law!) + style

34



Interface Jargon + 
Threading Support

• Automated checking (beyond coding convention) 
almost impossible 

• requires design work / understanding of the 
interfaces 

• Employ change management instead!

35



Change Management



Change Management
• Monitor by a second pair of eyes: two brains are 

better than one, especially if one brain is biased 

• Avoids bugs from creeping in 

• Also exposes code, new features to additional /
backup developers 

• Exposes changes to larger horizon: we all think of 
changes in different contexts

37



Change Management

38



Change Management
• Can be pre- or post-publication 

• Pre-publication 

• package tags / tag collector (dying concept) 

• package owner merges changes 

• formalized patch review 

• pair programming

39



Change Management
• Post-publication 

• commit review by package owner 

• Post-review risks stability of HEAD of master / dev-
branch 

• still reasonable for small changes 

• here, too: be pragmatic, not dogmatic

40



Lessons at CERN
• If it works, it will break 

• new OS version, new compiler version, new 
language version 

• Only way out: embrace change 

• put procedures in place to survive change 

• benefit from it instead of mitigating it

41



Multi-Platform Support



Multi-Platform Support
• Problems: 

• big- versus little-endian 

• OS API 

• compilers with limited language support 

• Experienced developers will get a feel of which 
language constructs are causing problems

43



Multi-Platform Support
• Advantages 

• increases general robustness 

• easier to follow architecture changes 

• will x86_64 be the instruction set of 2030? 

• more compilers = more opinions on code, more 
warnings (that’s a good thing!)

44



Multi-Platform Support

• Checking by building on many platforms, regularly 

• Code correctness tests!

45



Tests





Code Correctness Tests
• Large matrix of builds 

• build on all supported platforms, with all 
supported configurations 

• Ideally after every change to pinpoint culprits 

• Current common grounds: the HEAD works 

• possibly with dev branch, CI merges into master 
after validation

48



Code Correctness Tests
• Run build (incremental or full) 

• check for errors versus platform 

• also check for warnings! 

• Run tests 

• Build snapshot binaries 

• continuous delivery or for bug fix verification

49



Code Correctness Tests
• Needs automation 

• Typical tools: Jenkins; Bamboo; TeamCity; BuildBot 
and others 

• schedule and initiate build on all required 
machines 

• collect output; filter errors, warnings 

• report (web, email) versus code revision

50



Functionality Tests
• “Does my software actually work?” 

• unit tests; regression tests; integration tests 

• rules when to write a test 

• coverage analysis 

• testing libraries: cppunit / GoogleTest / … 

• Needs automation!

51



Topical Tests

• Memory error checkers - use after free / before 
initialization 

• e.g. valgrind 

• Thread error checkers 

• e.g. hellgrind, Vtunes

52



Static Analysis

• Analyzes source code without running it; creating 
branch graph to follow possible if etc combinations 

• Finds use after delete; impossible if conditions; 
memory errors etc

53



Static Analysis
0: int func(char* buf) { 
1:  strcat(buf, “<default>”); 
2:  int pos; 
3:  if (buf[0] != ‘<’) { 
4:    std::cout << “Number between 0 and 8:\n”; 
5:    std::cin >> pos; 
6:  } 
7:  buf[pos] = 0; 
8:  if (!buf) return -1; 
9:  return pos; 
   } 

• What’s wrong in this snippet?

54



Voluntary “Homework”
• Do a code review, simulating a static analysis tool 

• Compile it here: https://godbolt.org/g/7UAWCt  

• Send your optimal version of 
  int func(char* buf)  
to axel@cern.ch and I’ll send you mine 

• let’s review one another’s version 

• by Sunday 24:00, in case the weekend is rainy

55

https://godbolt.org/g/7UAWCt
mailto:axel@cern.ch


Static Analysis
• Several tools out there, for instance 

• basic checker: compiler warnings! 

• clang static analysis 

• Coverity 

• Differ in set of bugs checked; tracing capabilities 
(through function calls etc); user interface; false 
positive rate

56



CERN Lessons

• Static analysis cannot be replaced by test suite: it 
tests the things that “never happen” 

• Improves code stability 

• Developers feel “watched”: improves overall code 
quality

57



Performance Test
• Changes can deteriorate performance: 

• takes more CPU cycles to get an answer 

• takes more RAM 

• takes more I/O operations 

• takes more disk space 

• Criteria vary depending on product

58



Performance Test

• Usually part of release baking 

• Better yet: automate 

• Problem: which changes are intentional? 

• Tools vary with criteria; e.g. cgroups; massif; 
CDash

59





100%



Current Challenges

• Massive multi-threading 

• Data-oriented programming 

• C++11 and up 

• Move every tool into the FOSS world

62



Conclusion (1/4)
• Good software development is an art by itself 

• complex; many aspects; need to juggle many 
tools and often conflicting goals 

• Not a reason to avoid it, but needs brain energy 

• Need to find compromise between coding 
productivity and control

63



Conclusion (2/4)

• Using the right tools pays off: 

• 1 hour more work for one dev can mean 10 
minutes saved for 10k users each 
  $ python3 -c 'print(10.*1E4/60/24/5, "weeks!")' 
  13.88888888888889 weeks! 

• users will trust your software more

64



Conclusion (3/4)
• Help your team define missing procedures 

• Review procedures, review tools, review 
effectiveness 

• cover all aspects: runtime + performance tests, 
static analysis - none of that is optional 

• automatize, reduce developers’ pain to increase 
acceptance

65



Conclusion (4/4)

• Go out and write good code! 

66


