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Moore’s law and power wall

• In 1965 G. Moore noted that 

the number of electronic 

components which could be 

crammed into an integrated 

circuit was doubling every year.

• Moore’s law is not a “Law”, it’s  

more of a self-fulfilling 

prophecy..

Number of transistors per chip is going up

The clock speed is not 

The amount of energy dissipated per chip is the limiting factor (power wall)

INTRODUCTION
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Why do we care?

Bottom line…

Massive data processing, modelling, simulation from 

fundamental  research and beyond!

For years we have relied on the increase of clock speed to 

simply see our code running faster on more performant 

hardware..   it’s over!

INTRODUCTION
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Technology is moving fast: ever faster networks,  performant storage, 

distributed systems, multi-processor architectures, supercomputers, 

Cloud, Grid and heterogeneous architectures



INTRODUCTION

An example

High Performance Computing

• > x500,000 increase in supercomputer performance 

in past 20 years

• The race is already on for Exascale computing!

ExaFLOP = 1018 calculations per second top500.org

Need to think parallel!
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Top500 @ISC2017
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Performance

• Timing: faster execution

• CPU time, latency,…

• Speedup (parallel vs serial execution) 

• Throughput: Amount of processed data

• Size: smaller executable, smaller memory footprint

• Scaling: x2 in number of cores (or vector size) doubles performance

…and of course ... forward scalability: 

• Maximum performance today should scale on future hardware 

"automatically"

Improving performance is a tradeoff!! 

• Timing vs. Size

• Compilation speed and memory

• Latency vs throughput

Is there A definition?

PERFORMANCE
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• Before any optimisation, need a way to 

measure what to optimise

• Before any measurement, need an explicit 

statement of the problem to solve. 

➥ A good understanding of the hardware

➥ Reproducible, representative benchmarks

➥ “The right” tool

➥ Time (!): Performance optimisation is an 

iterative process

“First catch the rabbit”
a recipe for rabbit stew

Measuring performance (I) 

PERFORMANCE
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Measuring performance (II)

Identify hotspots:

Focus on hotspots and ignore sections 

that account for little CPU usage.

Identify bottlenecks:

Disproportionately slow parts

Places where parallelizable work halts or is

deferred (e.g. I/O)

Change algorithm to reduce unnecessary 

slow areas

PERFORMANCE
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Majority of scientific and 

technical programs 

accomplish most of their 

work in a few places!



Statistical Sampling: 

Program flow is periodically interrupted, 

to examine state 

• Asynchronous sampling: 

• Timers 

• Hardware counters (CPU cycles, L3 

cache misses, etc.) 

• Synchronous sampling: 

• Calls to certain library functions are 

intercepted (malloc, fread, …) 

Profiling techniques

PERFORMANCE

Code Instrumentation:

• Code for collecting information is 

inserted into original program

• Approaches: 

• Manual (measurement APIs) 

• Automatic source level 

• Compiler assisted (e.g. gprof) 

• Binary translation 

• Runtime instrumentation 
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Pros & Cons

PERFORMANCE

Advantages:

• No changes to program or build process 

• Recommended: Debugging symbols 

• No blind spots:

• Library functions 

• Functions with unavailable source code 

• Low overhead (typically 3-5%) 

Limitations: 

• Some degree of uncertainty 

• Information attributed to source lines may 

not be accurate 

• No access to some information: 

• Number of calls of a certain function 

• Average runtime per call of a certain 

function 

Reverse everything for Code instrumentation
10

Statistical sampling



PERFORMANCE

Some profiling tools
• VTune, Advisor – Intel products, powerful, multi-

threading analysis and vectorisation

• gprof: GNU, Flat profiles, call lists, Recompilation 

needed

• PIN, Valgrind: Instrumentation / Synthetic software 

CPU: cache misses and branch mispredictions, 

memory space usage, function call relationships

• perfmon2: Low level access to counters, No 

recompilation needed

Examples 

from Intel 

VTune
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Multi-dimensional 

improvement

• Multiple computing nodes

• Multi-socket

• Multi-core

• Multi-threading

• Instruction Level Parallelism

• Instruction pipelining

• Vector registers

Data parallelism:

• same transformation to multiple 

pieces of data

• wise design of data structures

Task/Process parallelism:

• split load into “baskets of work” 

through a pool of resources

• Check inter-dependency 

IMPROVING PERFORMANCE
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Multi-dimensional 

improvement

• Multiple computing nodes

• Multi-socket

• Multi-core

• Multi-threading

• Instruction Level Parallelism

• Instruction pipelining

• Vector registers

IMPROVING PERFORMANCE

Which direction?
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Coming up next…

• Introduction to concurrency

• Suggestions to design parallel code

• Vectorisation

• Compiler optimisation and auto-vectorisation

IMPROVING PERFORMANCE
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Introducing concurrency

• Process: isolated instance of a program, with its own space in memory

• Can have multiple threads

• Easy to manage

• Communication/switching between them possible but pricey

• Thread: light-weight process within process

• share memory with other threads belonging to same process

• Managed and scheduled by the kernel according to available resources

• Many options available:

• C++11 std::thread

• OS: pthreads (linux)..

• Libraries: OpenMP …

• Task: Logically discrete section of computational work. Typically a program-like 

set of instructions executed by a processor.

Processes-threads-tasks

and what about memory!?!

IMPROVING PERFORMANCE
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Shared memory (thread) model

• Main program loads necessary system and 

user resources

• Performs serial work and creates threads, 

scheduled and run by OS 

• Threads have local data and share common 

resources

• Communicate by updating global memory 

address locations

• Synchronisation ensures that two threads 

do not update same global address

IMPROVING PERFORMANCE
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Distributed/Hybrid memory models

Distributed memory: Tasks use own local 

memory

• Exchange data by sending and receiving 

messages

• Typically use libraries e.g. Message Passing 

Interface (MPI)

Hybrid memory: combines more than one programming model e.g: MPI + OpenMP

• Threads perform computationally intensive kernels using local, on-node data

• Communication between processes on different nodes occurs over the network 

using MPI

Underlying hardware network speed & bandwidth do matter!

IMPROVING PERFORMANCE
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Designing parallel code

• Understand the problem: can it actually be 

parallelised?

• Identify inhibitors to parallelism (e.g. data 

dependence)

• Change the algorithm, check external 

libraries

• Partition: break the problem in discrete 

chunks

• Communication: what is needed? (e.g. 

visibility and scope, synchronous or 

asynchronous…)

• Consider cost in terms of overhead,  

latency and bandwidth

Loop carried dependency:

Loop independent dependency:

IMPROVING PERFORMANCE
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Synchronisation

• Barriers: Each task works until the barrier, 

then stops.

• Synchro when last task reaches the 

barrier.

• Locks and semaphores: protect access 

to global data or a code section. 

• One task at a time may own it

• The first task to acquire the lock "sets" 

it. Others wait until the owner releases 

the lock

• Load balancing/granularity

IMPROVING PERFORMANCE
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2x Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz

Lock-free algorithm

(memory polling)
Algorithm using spin-lock

Managing the sequence of work is critical!



Best solution?

There is no silver bullet!

• Case by case investigation 

needed

• Best solution: often a trade-

offtraffic deadlock in Tel Aviv, 2011

IMPROVING PERFORMANCE
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Coming up next…

• Introduction to concurrency

• Suggestions to design parallel code

• Vectorisation

• Compiler optimisation and auto-vectorisation

IMPROVING PERFORMANCE
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Vectorisation: Why?

Vectorised data is a prerequisite to make efficient use of modern hardware

IMPROVING PERFORMANCE

22



Single Instruction Multiple Data

IMPROVING PERFORMANCE
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Vectorisation: some history

Year Register
Corresponding 

Instruction set

~1997 80 bit MMX

~1999 128bit SSE1

~2001 128 bit SSE2

… 128 bit SSEx

2008 128 bit AVX

~2010-2011 256 bit AVX2

2013 512 bit IMCI

2015 512 bit AVX512

P5 Pentium

Pentium III

Pentium IV

Pentium - Nehalem core i7

Sandy Bridge

Haswell

Xeon Phi (Knights Corner)

Xeon Phi (Knights Landing)

IMPROVING PERFORMANCE
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Vector registers

Reminder:

Single Precision Floating Point (FP) : 32 bit

Double Precision FP : 64 bit

16 single precision FP

8 double precision FP

64 8-bit integer

32 16-bit integer

16 32-bit integer

8 64-bit integer 

512 bit

64 bit mask

AVX 512

4 single precision FP

2 double precision FP

16  8-bit integer

8 16-bit integer

4 32-bit integer

2 64-bit integer 

128 bit

8 single precision FP

4 double precision FP

SSE and AVX 128

AVX 256

Using today one FP 

(single precision) 

means wasting 15 

slots in a register!

IMPROVING PERFORMANCE
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IMPROVING PERFORMANCE

Scalable vector

extension

26

• Flexible register size:  from 128 bits up to 2048 bits per register 

• Supports vector-length-agnostic programming model that can adapt to 

available registers

• Compile or hand-code programs for SVE once, then run at different 

implementation performance points

https://developer.arm.com/hpc/a-sneak-peek-into-sve-and-vla-programming

No need to recompile or rewrite when 

longer vectors appear!



SIMD programming models

IMPROVING PERFORMANCE
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• Autovectorization

• External / compiler pragmas

• SIMD libraries

• Compiler Intrinsics

• Inline Assembly



Auto-Vectorisation

• Prefer countable single entry and single exit “for” loops.

• Write straight line code, reducing branches (switches, goto or return 

statements)

• Avoid dependencies between loop iterations

• Prefer array notation to pointers.

• Use the loop index directly in array subscripts where possible

• Favour inner loops with unit stride

• Align data (Data to be operated upon as an n-byte chunk is stored on an n-

byte memory boundary)

• Use efficient memory accesses

• Prefer Structure of Arrays (SoA) over Array of Structures (AoS)

Good practices to “convince the compiler”

IMPROVING PERFORMANCE
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Code example: quadratic solver

IMPROVING PERFORMANCE

29 VecCore library.     https://github.com/root-project/veccore

By Guilherme Amadio



Code example: quadratic solver

IMPROVING PERFORMANCE

30 VecCore library: https://github.com/root-project/veccore

By Guilherme Amadio



Code example: quadratic solver

IMPROVING PERFORMANCE

31 VecCore library: https://github.com/root-project/veccore

By Guilherme Amadio



Code example: quadratic solver

IMPROVING PERFORMANCE

32 VecCore library: https://github.com/root-project/veccore

By Guilherme Amadio



Performance comparison

IMPROVING PERFORMANCE
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By Guilherme Amadio

VecCore library



Performance comparison

IMPROVING PERFORMANCE

34 VecCore library: https://github.com/root-project/veccore

By Guilherme Amadio



Other compiler optimisations

• Instruction selection: e.g. *2 multiplication done by addition, bit-shift

• Constant elimination

• Algebraic simplification

• Dead code removal

• Loop Optimisations: often executed, large payoff!

• Inlining: improves time at the cost of space (larger code); allows for further 

optimisation; 

For every compiler there is a modified compiler that generates shorter code

Rice, 1953

• Controlled by flags and pragmas

• https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

• https://software.intel.com/en-us/articles/step-by-step-optimizing-with-intel-c-compiler

IMPROVING PERFORMANCE

35

Differences among compilers and 

target architectures

Trade off on accuracy and precision

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html


Memory access pattern: AOS 

output vector

Loading AOS in a vector register is a strided load/store 

operation

• Multiple load/shuffle/insert or gather operations

• As vector register lenght increases so does the number of 

ops required to fill it

• Need large compute part in the algorithm to amortize the 

AOS overhead

IMPROVING PERFORMANCE
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A[i+0] A[i+1] A[i+2]



Memory access pattern: SOA

SOA

output 

vector

SOA approach is better vectorised by 

compilers

• Memory access is more efficient if  

memory layout has multiple instances 

of a data member adjacent in memory 

and aligned

• Single load/store to move data in/out of 

registers

Need to take overheads to write data as SOA into account!! 

IMPROVING PERFORMANCE
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Our case study
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Essential for detector design and data-theory 

comparison

…and in need of HPC!

Simulation in High Energy Physics

39https://cds.cern.ch/record/1309872

simulating the passage of particles through matter



Simulation in HEP

Heavy computation requirements, massively CPU-bound

The LHC uses more than 50% of its distributed GRID power for detector 

simulations (~250.000 CPU years equivalent so far)

cms.web.cern.ch

CURRENT SOFTWARE: GEANT4

40

http://cms.web.cern.ch


Geant4 (GEometry ANd Tracking)

• Linear scaling of throughput with number of 

threads 

• Large savings in memory: 9MB  extra 

memory per thread

• No Performance/Throughput increase

P. Canal,  ICHEP’16 

• Major international collaboration, ~2M lines of code, hundreds of users 

worldwide

• Large variety of applications  ..beyond HEP: Medical applications, materials & 

space science

• Scalar processing: Each particle is simulated and followed through its whole life 

one by one.

• Event level parallelism: each thread processes one event exclusively

current standard within HEP

CURRENT SOFTWARE: GEANT4

Performance (Xeon + Xeon Phi)
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Current code: 

Geant4

CURRENT SOFTWARE: GEANT4

Call graph

for a very simple (!) Geant4 example
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleB1.html

valgrind / gprof2dot / graphviz

42

http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleB1.html


Current code: Geant4

• Codebase very large and non-homogenous

• Very deep call stack (IC misses) and virtual table structure

• Hotspots practically inexistent

CURRENT SOFTWARE: GEANT4

Valgrind/kCachegrind
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Each rectangle 

represents a function



so .. how do we optimise?

..a hint..

44

Tuning levels

“a reality check by A.Nowak”



Let’s see..

• Physics  is “naturally parallel”

• Events, particle trajectories, energy 

depositions 

• Particle transport is mostly local:

• 50% of the time spent in 50/7100 volumes 

(ATLAS)

ATLAS volumes sorted by transport 

time. 

Same behaviour observed for most 

HEP geometries

• Locality not exploited by classical 

transport code

• Cache misses due to fragmented code

THE GEANTV PROTOTYPE

cms.cern.ch
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http://cms.web.cern.ch


GeantV: introducing parallelism

An algorithm to transport particles through 

matter has “few” key ingredients:

• Geometrical shapes that describe detector 

volumes

• Physics algorithms that describe particle 

interactions with detector materials

• “Navigation” framework that organises 

particles and transports them  “through” 

geometry and physics 

Restructuring simulation code in a new prototype 

The GeantV projectTHE GEANTV PROTOTYPE
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GeantV: introducing parallelism

47

• Introduce data parallelism: transport  particles in 

groups

• Group them according to geometrical volumes 

they cross and/or physics processes

• Keep overhead under control!

• Introduce concurrency: split the whole flow in 

different tasks and/or threads to run 

simultaneously

• Portable on different architectures (CPUs, GPUs 

and accelerators)

Restructuring simulation code in a new prototype 

The GeantV projectTHE GEANTV PROTOTYPE

http://geant.cern.ch


Moving on to…

• Introducing vectorization (examples from geometry)

• How we’ve implemented concurrency

• Memory management 

• Performance improvement!
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Geometry… 

The CMS detector:

boxes, trapezoids, tubes, cones, 

polycones millions of volumes, very 

complex hierarchy…

49

It sums up to more than 30% of processing time

A geometry library provides APIs to: 

In or out?

collision detection and 

distance to enter de object

minimal safe distance to 

object

distance to leave object

THE GEANTV PROTOTYPE



VectorizedGeometry

High performance geometry library for next generation 

simulation frameworks

Optimised library of primitive and composite solids

Reduce virtual function calls and avoid code 

multiplication

Use template code

Introduce data parallelism 

Explicit vectorisation (SIMD external libraries + 

VecCore abstraction)

APIs for single & many-track navigation

“Inner” vectorisation of complex shapes

Compiler autovectorisation

50

“Inner” Vectorisation

THE GEANTV PROTOTYPE



Vectorising Geometry

Option A (“free lunch”):

put code into a loop and let the compiler vectorize it works only in few cases

Option B (“convince the compiler”):

refactor the code to make it “auto-vectorizer” friendly might work but strongly compiler 

dependent

Option C (“use SIMD library”):

refactor the code and perform explicit vectorization using external libraries library

compiler independent

typical geometry task in particle tracking: 

find next hitting boundary and get distance to it

1 particle -> 1 result N particles -> N results

THE GEANTV PROTOTYPE
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Example

A (C++) code fragment to tell whether a particle is inside a volume 

THE GEANTV PROTOTYPE

positions/dimensions vectors (x,y,z)
52



Option A: “free lunch”
Start from some existing code

Provide a vector interface and .. hope that compiler vectorise

It doesn’t vectorise!

THE GEANTV PROTOTYPE

positions/dimensions AOS: (x,y,z,x,y,z…)
53



1. copy scalar code to new function ( "manual inline" )

2. change the data layout (see SOA)

3. remove early - returns 

4. manually unroll loops

It works but results depend on compilers choice and choice of optimisation flags

THE GEANTV PROTOTYPE
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Option B: “convince the compiler”



Option C: “use external library”

Always vectorizes …don’t have to convince the compiler!

• excellent performance ( automatically uses aligned data )

• can mix vector context and scalar context ( code )

Vc library
THE GEANTV PROTOTYPE

https://github.com/VcDevel55

https://github.com/VcDevel/Vc
https://github.com/VcDevel


Improving vectorisation

Branches distinguish between “static” properties of class instances:

general “tube” class distinguishes at runtime between “FullTube”, “Hollow Tube” ...

Tube HollowTube FullTubePhi

branches are the enemy of vectorization...

HalfHollowTubeHollowTubePhi

THE GEANTV PROTOTYPE

Remove branches introducing a 

separate class for each tube 

realisation

C++: AbstractTube *t = new FullTube();
56



Reducing branches: C++ templates

• evaluate and reduce “static” branches at compile time

• generate binary code specialised to concrete solid instances

C++: AbstractTube *t = new SpecializedTube<FullTube>();

Performance 

and no code duplication!

THE GEANTV PROTOTYPE

➡ vectorisation is efficient

➡ better compiler optimisations of scalar code

➡ less virtual functions (less calls to virtual tables)

➡ “generic programming” philosophy  :-)

➡ Usage of SIMD external libraries is straightforward (VecCore abstraction 

layer)

➡ Can be used to insure portability 57



VecGeom performance 

legacy code

legacy code

• GeantV runs VecGeom scalar navigation in full CMS geometry

• first realistic estimate of overall impact on simulation time: ~1.6 improvement 

using only scalar navigation mode

scalar
✓

Simulation of 10 pp events at 7TeV in the CMS detector

THE GEANTV PROTOTYPE
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VecGeom performance
A set of CPU-intensive navigation methods:

Measure wall time for vector  and scalar implementations:

Calculate vector speed-up (wrt scalar) using AVX2 and  AVX512

THE GEANTV PROTOTYPE
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Tube



VecGeom performance
A set of CPU-intensive navigation methods:

Measure wall time for vector  and scalar implementations:

Calculate vector speed-up (wrt scalar) using AVX2 and  AVX512

THE GEANTV PROTOTYPE
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Tube



Scalability

A simplified testbed for geometry

navigation: 

• Toy detector (typical tracker 

geometry)

• Basket approach: particles are 

processed in bunches reshuffled

after each step

• “ideal vector” transport: particles are 

processed in bunches without any re-

shuffling (“theoretical” best case)

• Comparison to classical navigation

• Measure speedup wrt Nthreads

THE GEANTV PROTOTYPE
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Speeup vs ROOT(1 thread)

Speedup vs same(1 thread)

Ideal

Basket

ROOT

Ideal

Basket



Scalability (II)
High vectorization intensity achieved for both ideal and basketized cases

AVX-512 brings an extra factor of ~2 to our benchmark

we do understand vectorisation!

THE GEANTV PROTOTYPE
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Ideal

Basket



Initial approach: static allocation of 

workers

• Main thread method as infinite looper

• Worker threads execute a set of chained 

tasks (geometry navigation, propagation 

in the magnetic field, physics 

processes..)

• Data communication by concurrent 

queues

• Main queue of baskets of tracks

• Secondary queues of transport 

byproducts (I/O, files, final products)

• Use SOA

Concurrency in GeantV

Investigated different ways of scheduling & sharing work

THE GEANTV PROTOTYPE
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Concurrency in GeantV

Contention prevents scaling to high number of threads

Issue for many cores architectures!

THE GEANTV PROTOTYPE

Creating baskets: main Amdahl source

Reshuffling baskets: constant overhead

scalability with number of threads

Nthreads

64

Geometry: main consumer, will balance with ohysics

in fututre



New GeantV workflow

THE GEANTV PROTOTYPE
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Initial version New workflow

SOA container: overheads for 

reshuffling, concurrency

Hybrid system: 

• AOS handling in basketization, 

• SOA for dispatching to vector 

code

Main basket queue: non-local, 

adding contention points

Thread-local data and containers, 

relying less on common 

concurrency services

System-driven allocation of 

resources (threads, memory)

NUMA-aware allocation of 

resources, relying on topology 

discovery

“Avalanche” memory behavior: 

tracks are never released, the full 

shower is kept in memory

Smart stack-like behavior, favoring 

transporting secondaries/low 

energy tracks with priority



New GeantV workflow

THE GEANTV PROTOTYPE
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A change of perspective

THE GEANTV PROTOTYPE

67 https://indico.cern.ch/event/505613/contributions/2230828/

Performance tuning  as a multi-

objective optimisation problem

Many parameters and multiple layers of parallelism: a complex system to tune



The end
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Summary (I)

We started the GeantV project aiming at a x5 speedup wrt current 

simulation software

• Relied on several techniques leveraging compiler and C++ features

• Compiler optimisation ( & inlining)

• c++ templating 

• Introduced data parallelism and concurrency to profit from the latest 

advancements in terms of architecture

• Results in terms of vectorisation and scalability are encouraging and 

call for further optimisation

• Multi-node

• …

What we have done

THE END
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Summary (II)

• Why we worry about performance

• How to approach the problem of improving performance

• Basic concepts of data and task parallelism 

• Concurrency, Memory related programming models, 

Vectorisation

• A real life example

What you should know now..

THE END
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Summary (III)

• Details on memory management, bandwidh, cache 

usage

• Scaling through many nodes ( messaging, resource

sharing, I/O)

• Portability vs performance

What I did not talk about..

THE END
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Conclusions

There is a large variety of methods and strategies (including

machine learning and genetic algorithms) to use so..

..use your brain!

There is no pre-defined “improving performance algorithm” 

Improving code performance is an “epic fight”

THE END
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Thank you!

THE END
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Removing bottlenecks: I/O 

• First implementation:Send 

concurrently data to one thread 

dealing with full I/O

• Buffer mode: Send concurrently 

local hits connected to memory 

files produced by workers to 

one thread dealing only with 

final merging/writing to disk

• Physics simulation produces ‘hits’ i.e. energy depositions in detector sensitive parts

• Hits are produced concurrently by all the simulation threads

• Thread-safe queues handle asynchronous generation of hits by several threads

• Dedicated output thread transfers the data  to storage

THE GEANTV PROTOTYPE
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scheduler

Physics: 

• cross sections

• reactions

GeantV: scheduler

Re-filtered  tracks go 

back to the scheduler 

(re-basketizing)

Re-basketizer

Dispatching

Overhead should be much smaller than locality/SIMD gains

portable without hindering performance

After each step particles move on to different fates ➙ need re-filtering!

75

Geometry 

navigation 

to different 

algorithms



Stage buffer

SimulationStage
virtual DoIt(      ,        )

SimulationStage

Handler 1

Basketizer 1

Handler “i”

Basketizer “I”

virtual Select(track)
virtual DoIt(track)

AddTrack(track,            )

scalar

vector

loop
default behavior
to override

e.g. ComptonFilter::DoIt

Select next stage if different from: 
SimulationStage::fFollowUp

SimulationStage

Stage buffer

SimulationStage

loop

76

GeantV version 3: A generic vector flow approach

Stage buffer
Stage buffer GeantTrack *

GeantPropagator

GeantTaskData

GeantPropagator

workers

Stack-like bufferlane0 lane1 laneN…

primaries secondaries…

Processing flow 
per thread

Event 
server



Processing flow per propagator/NUMA node
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G
eo

m
etryStage

P
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n
Stage

P
h

ysicsStage

Event 
server

Volume1 Volume2

Basketizer

Scalar code

Vectorized code

Linear 
prop.

Basketizer

Field prop.

Basketizer

Process1 Process2

BasketizerHandlers

Stage buffers

Threads on same 
propagator/socket

Scalar DoIt() Vector DoIt()

GEANTV SCHEDULING FRAMEWORK REVISITED



Stack-like handling of tracks

Stack-like buffer PreStepStagebuffer

XSecSamplingStagebuffer

GeomQueryStagebuffer

PropagationStagebuffer

ContinuousProcStagebuffer

DiscreteProcStagebuffer

SteppingActionsStagebuffer

Generation 0 (primaries)

Generation 1

Generation 2

Generation 3

Generation 4

Generation 5

Generation 6

Generation 7

Generation > 10

Generation 8

Generation > 10

Generation 0 (primaries)

Generation 1

Generation 2

Generation 3

Generation 4

Generation 5

Generation 6

Generation 7

Generation 8

buffer

buffer

buffer

buffer

buffer

buffer

buffer

Stepping loop

Number of lanes flushed into the stepping loop controlled by: GeantConfig::fNmaxBuffSpill
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VecGeom Benchmarks on Intel® Xeon Phi™ (KNL)

Everything was compiled with Intel C/C++ 

compiler 16.0.3

Used “-O3 -xMIC-AVX512”

Contrary to AVX2 benchmarks on 

Skylake, UME::SIMD gives best 

performance on Knights Landing

Scalar code under Vector API shows 

auto-vectorization in many cases
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• Standard mode (1 independent process per node)
• Always possible, no-brainer
• Possible issues with work balancing (events take different time)
• Possible issues with output granularity (merging may be required)

• Multi-tier mode (event servers)
• Useful to work with events from file, to handle merging and workload 

balancing
• Communication with event servers via MPI to get event id’s in common files

Event feeder

Node1

Transport Transport

Numa0 Numa1

Event feeder

Node2

Transport Transport

Numa0 Numa1

Event server

Nodemod[N]

Transport Transport

Numa0 Numa1

Merging service

Event feeder

Node1

Transport Transport

Numa0 Numa1

Event feeder

Node2

Transport Transport

Numa0 Numa1

Event server

Nodemod[N]

Transport Transport

Numa0 Numa1

Merging service

Event feeder

Node1

Transport Transport

Numa0 Numa1

Event feeder

Node2

Transport Transport

Numa0 Numa1

Event server

Nodemod[N]

Transport Transport

Numa0 Numa1

Merging service

MPI

MPI
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Virtual vs template
Virtual inheritance: one of the most powerful features of C++
Allow for maximum flexibility
Separation of interface and implementations: clean code
Unified treatment of components behind the same interface
Comply to interfaces: easy mixing of components
E.g. Library developer provides interfaces, user complies to them
when writing implementations
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Amdahl’s law
“… the effort expended on achieving high parallel processing rates is wasted unless 

it is accompanied by achievements in sequential processing rates of very nearly the 

same magnitude.” - G.M. Amdahl - 1967

It tells us something about parallel execution: It states the maximum speed up 

achievable given a certain problem of FIXED size and serial portion of the program.

IMPROVING PERFORMANCE
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Option B: “convince the compiler”

Intermediate local 

variables

+ if conversion

inline and remove 

early returns

not enough! 

no 

vectorisation 

not enough! 

no 

vectorisation 

THE GEANTV PROTOTYPE
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Option B… continued

AOS to SOA

THE GEANTV PROTOTYPE
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manually unroll loops


