
Improving code

performance:

an introduction

Practical examples from particle physics simulation

Sofia Vallecorsa

2017 Openlab Summer Students lecture series

sofia.vallecorsa@cern.ch

mailto:sofia.vallecorsa@cern.ch

• Introduction

• Why performance is important?

• Performance

• Can we define it?

• How do we measure it?

• Improving performance

• Use case: Simulating particle interactions through matter

• Current status: Geant4 performance

• The GeantV prototype

• The end: Summary & Conclusions

Outline

2

Moore’s law and power wall

• In 1965 G. Moore noted that

the number of electronic

components which could be

crammed into an integrated

circuit was doubling every year.

• Moore’s law is not a “Law”, it’s

more of a self-fulfilling

prophecy..

Number of transistors per chip is going up

The clock speed is not

The amount of energy dissipated per chip is the limiting factor (power wall)

INTRODUCTION

3

Why do we care?

Bottom line…

Massive data processing, modelling, simulation from

fundamental research and beyond!

For years we have relied on the increase of clock speed to

simply see our code running faster on more performant

hardware.. it’s over!

INTRODUCTION

4

Technology is moving fast: ever faster networks, performant storage,

distributed systems, multi-processor architectures, supercomputers,

Cloud, Grid and heterogeneous architectures

INTRODUCTION

An example

High Performance Computing

• > x500,000 increase in supercomputer performance

in past 20 years

• The race is already on for Exascale computing!

ExaFLOP = 1018 calculations per second top500.org

Need to think parallel!

5

Top500 @ISC2017

http://top500.org

Performance

• Timing: faster execution

• CPU time, latency,…

• Speedup (parallel vs serial execution)

• Throughput: Amount of processed data

• Size: smaller executable, smaller memory footprint

• Scaling: x2 in number of cores (or vector size) doubles performance

…and of course ... forward scalability:

• Maximum performance today should scale on future hardware

"automatically"

Improving performance is a tradeoff!!

• Timing vs. Size

• Compilation speed and memory

• Latency vs throughput

Is there A definition?

PERFORMANCE

6

• Before any optimisation, need a way to

measure what to optimise

• Before any measurement, need an explicit

statement of the problem to solve.

➥ A good understanding of the hardware

➥ Reproducible, representative benchmarks

➥ “The right” tool

➥ Time (!): Performance optimisation is an

iterative process

“First catch the rabbit”
a recipe for rabbit stew

Measuring performance (I)

PERFORMANCE

7

Measuring performance (II)

Identify hotspots:

Focus on hotspots and ignore sections

that account for little CPU usage.

Identify bottlenecks:

Disproportionately slow parts

Places where parallelizable work halts or is

deferred (e.g. I/O)

Change algorithm to reduce unnecessary

slow areas

PERFORMANCE

8

Majority of scientific and

technical programs

accomplish most of their

work in a few places!

Statistical Sampling:

Program flow is periodically interrupted,

to examine state

• Asynchronous sampling:

• Timers

• Hardware counters (CPU cycles, L3

cache misses, etc.)

• Synchronous sampling:

• Calls to certain library functions are

intercepted (malloc, fread, …)

Profiling techniques

PERFORMANCE

Code Instrumentation:

• Code for collecting information is

inserted into original program

• Approaches:

• Manual (measurement APIs)

• Automatic source level

• Compiler assisted (e.g. gprof)

• Binary translation

• Runtime instrumentation

9

Pros & Cons

PERFORMANCE

Advantages:

• No changes to program or build process

• Recommended: Debugging symbols

• No blind spots:

• Library functions

• Functions with unavailable source code

• Low overhead (typically 3-5%)

Limitations:

• Some degree of uncertainty

• Information attributed to source lines may

not be accurate

• No access to some information:

• Number of calls of a certain function

• Average runtime per call of a certain

function

Reverse everything for Code instrumentation
10

Statistical sampling

PERFORMANCE

Some profiling tools
• VTune, Advisor – Intel products, powerful, multi-

threading analysis and vectorisation

• gprof: GNU, Flat profiles, call lists, Recompilation

needed

• PIN, Valgrind: Instrumentation / Synthetic software

CPU: cache misses and branch mispredictions,

memory space usage, function call relationships

• perfmon2: Low level access to counters, No

recompilation needed

Examples

from Intel

VTune

11

Multi-dimensional

improvement

• Multiple computing nodes

• Multi-socket

• Multi-core

• Multi-threading

• Instruction Level Parallelism

• Instruction pipelining

• Vector registers

Data parallelism:

• same transformation to multiple

pieces of data

• wise design of data structures

Task/Process parallelism:

• split load into “baskets of work”

through a pool of resources

• Check inter-dependency

IMPROVING PERFORMANCE

12

Multi-dimensional

improvement

• Multiple computing nodes

• Multi-socket

• Multi-core

• Multi-threading

• Instruction Level Parallelism

• Instruction pipelining

• Vector registers

IMPROVING PERFORMANCE

Which direction?

13

Coming up next…

• Introduction to concurrency

• Suggestions to design parallel code

• Vectorisation

• Compiler optimisation and auto-vectorisation

IMPROVING PERFORMANCE

14

Introducing concurrency

• Process: isolated instance of a program, with its own space in memory

• Can have multiple threads

• Easy to manage

• Communication/switching between them possible but pricey

• Thread: light-weight process within process

• share memory with other threads belonging to same process

• Managed and scheduled by the kernel according to available resources

• Many options available:

• C++11 std::thread

• OS: pthreads (linux)..

• Libraries: OpenMP …

• Task: Logically discrete section of computational work. Typically a program-like

set of instructions executed by a processor.

Processes-threads-tasks

and what about memory!?!

IMPROVING PERFORMANCE

15

Shared memory (thread) model

• Main program loads necessary system and

user resources

• Performs serial work and creates threads,

scheduled and run by OS

• Threads have local data and share common

resources

• Communicate by updating global memory

address locations

• Synchronisation ensures that two threads

do not update same global address

IMPROVING PERFORMANCE

16

Distributed/Hybrid memory models

Distributed memory: Tasks use own local

memory

• Exchange data by sending and receiving

messages

• Typically use libraries e.g. Message Passing

Interface (MPI)

Hybrid memory: combines more than one programming model e.g: MPI + OpenMP

• Threads perform computationally intensive kernels using local, on-node data

• Communication between processes on different nodes occurs over the network

using MPI

Underlying hardware network speed & bandwidth do matter!

IMPROVING PERFORMANCE

17

Designing parallel code

• Understand the problem: can it actually be

parallelised?

• Identify inhibitors to parallelism (e.g. data

dependence)

• Change the algorithm, check external

libraries

• Partition: break the problem in discrete

chunks

• Communication: what is needed? (e.g.

visibility and scope, synchronous or

asynchronous…)

• Consider cost in terms of overhead,

latency and bandwidth

Loop carried dependency:

Loop independent dependency:

IMPROVING PERFORMANCE

18

Synchronisation

• Barriers: Each task works until the barrier,

then stops.

• Synchro when last task reaches the

barrier.

• Locks and semaphores: protect access

to global data or a code section.

• One task at a time may own it

• The first task to acquire the lock "sets"

it. Others wait until the owner releases

the lock

• Load balancing/granularity

IMPROVING PERFORMANCE

19

2x Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz

Lock-free algorithm

(memory polling)
Algorithm using spin-lock

Managing the sequence of work is critical!

Best solution?

There is no silver bullet!

• Case by case investigation

needed

• Best solution: often a trade-

offtraffic deadlock in Tel Aviv, 2011

IMPROVING PERFORMANCE

20

Coming up next…

• Introduction to concurrency

• Suggestions to design parallel code

• Vectorisation

• Compiler optimisation and auto-vectorisation

IMPROVING PERFORMANCE

21

Vectorisation: Why?

Vectorised data is a prerequisite to make efficient use of modern hardware

IMPROVING PERFORMANCE

22

Single Instruction Multiple Data

IMPROVING PERFORMANCE

23

Vectorisation: some history

Year Register
Corresponding

Instruction set

~1997 80 bit MMX

~1999 128bit SSE1

~2001 128 bit SSE2

… 128 bit SSEx

2008 128 bit AVX

~2010-2011 256 bit AVX2

2013 512 bit IMCI

2015 512 bit AVX512

P5 Pentium

Pentium III

Pentium IV

Pentium - Nehalem core i7

Sandy Bridge

Haswell

Xeon Phi (Knights Corner)

Xeon Phi (Knights Landing)

IMPROVING PERFORMANCE

24

Vector registers

Reminder:

Single Precision Floating Point (FP) : 32 bit

Double Precision FP : 64 bit

16 single precision FP

8 double precision FP

64 8-bit integer

32 16-bit integer

16 32-bit integer

8 64-bit integer

512 bit

64 bit mask

AVX 512

4 single precision FP

2 double precision FP

16 8-bit integer

8 16-bit integer

4 32-bit integer

2 64-bit integer

128 bit

8 single precision FP

4 double precision FP

SSE and AVX 128

AVX 256

Using today one FP

(single precision)

means wasting 15

slots in a register!

IMPROVING PERFORMANCE

25

IMPROVING PERFORMANCE

Scalable vector

extension

26

• Flexible register size: from 128 bits up to 2048 bits per register

• Supports vector-length-agnostic programming model that can adapt to

available registers

• Compile or hand-code programs for SVE once, then run at different

implementation performance points

https://developer.arm.com/hpc/a-sneak-peek-into-sve-and-vla-programming

No need to recompile or rewrite when

longer vectors appear!

SIMD programming models

IMPROVING PERFORMANCE

27

• Autovectorization

• External / compiler pragmas

• SIMD libraries

• Compiler Intrinsics

• Inline Assembly

Auto-Vectorisation

• Prefer countable single entry and single exit “for” loops.

• Write straight line code, reducing branches (switches, goto or return

statements)

• Avoid dependencies between loop iterations

• Prefer array notation to pointers.

• Use the loop index directly in array subscripts where possible

• Favour inner loops with unit stride

• Align data (Data to be operated upon as an n-byte chunk is stored on an n-

byte memory boundary)

• Use efficient memory accesses

• Prefer Structure of Arrays (SoA) over Array of Structures (AoS)

Good practices to “convince the compiler”

IMPROVING PERFORMANCE

28

Code example: quadratic solver

IMPROVING PERFORMANCE

29 VecCore library. https://github.com/root-project/veccore

By Guilherme Amadio

Code example: quadratic solver

IMPROVING PERFORMANCE

30 VecCore library: https://github.com/root-project/veccore

By Guilherme Amadio

Code example: quadratic solver

IMPROVING PERFORMANCE

31 VecCore library: https://github.com/root-project/veccore

By Guilherme Amadio

Code example: quadratic solver

IMPROVING PERFORMANCE

32 VecCore library: https://github.com/root-project/veccore

By Guilherme Amadio

Performance comparison

IMPROVING PERFORMANCE

33

By Guilherme Amadio

VecCore library

Performance comparison

IMPROVING PERFORMANCE

34 VecCore library: https://github.com/root-project/veccore

By Guilherme Amadio

Other compiler optimisations

• Instruction selection: e.g. *2 multiplication done by addition, bit-shift

• Constant elimination

• Algebraic simplification

• Dead code removal

• Loop Optimisations: often executed, large payoff!

• Inlining: improves time at the cost of space (larger code); allows for further

optimisation;

For every compiler there is a modified compiler that generates shorter code

Rice, 1953

• Controlled by flags and pragmas

• https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

• https://software.intel.com/en-us/articles/step-by-step-optimizing-with-intel-c-compiler

IMPROVING PERFORMANCE

35

Differences among compilers and

target architectures

Trade off on accuracy and precision

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Memory access pattern: AOS

output vector

Loading AOS in a vector register is a strided load/store

operation

• Multiple load/shuffle/insert or gather operations

• As vector register lenght increases so does the number of

ops required to fill it

• Need large compute part in the algorithm to amortize the

AOS overhead

IMPROVING PERFORMANCE

36

A[i+0] A[i+1] A[i+2]

Memory access pattern: SOA

SOA

output

vector

SOA approach is better vectorised by

compilers

• Memory access is more efficient if

memory layout has multiple instances

of a data member adjacent in memory

and aligned

• Single load/store to move data in/out of

registers

Need to take overheads to write data as SOA into account!!

IMPROVING PERFORMANCE

37

Our case study

38

Essential for detector design and data-theory

comparison

…and in need of HPC!

Simulation in High Energy Physics

39https://cds.cern.ch/record/1309872

simulating the passage of particles through matter

Simulation in HEP

Heavy computation requirements, massively CPU-bound

The LHC uses more than 50% of its distributed GRID power for detector

simulations (~250.000 CPU years equivalent so far)

cms.web.cern.ch

CURRENT SOFTWARE: GEANT4

40

http://cms.web.cern.ch

Geant4 (GEometry ANd Tracking)

• Linear scaling of throughput with number of

threads

• Large savings in memory: 9MB extra

memory per thread

• No Performance/Throughput increase

P. Canal, ICHEP’16

• Major international collaboration, ~2M lines of code, hundreds of users

worldwide

• Large variety of applications ..beyond HEP: Medical applications, materials &

space science

• Scalar processing: Each particle is simulated and followed through its whole life

one by one.

• Event level parallelism: each thread processes one event exclusively

current standard within HEP

CURRENT SOFTWARE: GEANT4

Performance (Xeon + Xeon Phi)

41

Current code:

Geant4

CURRENT SOFTWARE: GEANT4

Call graph

for a very simple (!) Geant4 example
http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleB1.html

valgrind / gprof2dot / graphviz

42

http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleB1.html

Current code: Geant4

• Codebase very large and non-homogenous

• Very deep call stack (IC misses) and virtual table structure

• Hotspots practically inexistent

CURRENT SOFTWARE: GEANT4

Valgrind/kCachegrind

43

Each rectangle

represents a function

so .. how do we optimise?

..a hint..

44

Tuning levels

“a reality check by A.Nowak”

Let’s see..

• Physics is “naturally parallel”

• Events, particle trajectories, energy

depositions

• Particle transport is mostly local:

• 50% of the time spent in 50/7100 volumes

(ATLAS)

ATLAS volumes sorted by transport

time.

Same behaviour observed for most

HEP geometries

• Locality not exploited by classical

transport code

• Cache misses due to fragmented code

THE GEANTV PROTOTYPE

cms.cern.ch

45

http://cms.web.cern.ch

GeantV: introducing parallelism

An algorithm to transport particles through

matter has “few” key ingredients:

• Geometrical shapes that describe detector

volumes

• Physics algorithms that describe particle

interactions with detector materials

• “Navigation” framework that organises

particles and transports them “through”

geometry and physics

Restructuring simulation code in a new prototype

The GeantV projectTHE GEANTV PROTOTYPE

46

http://geant.cern.ch

GeantV: introducing parallelism

47

• Introduce data parallelism: transport particles in

groups

• Group them according to geometrical volumes

they cross and/or physics processes

• Keep overhead under control!

• Introduce concurrency: split the whole flow in

different tasks and/or threads to run

simultaneously

• Portable on different architectures (CPUs, GPUs

and accelerators)

Restructuring simulation code in a new prototype

The GeantV projectTHE GEANTV PROTOTYPE

http://geant.cern.ch

Moving on to…

• Introducing vectorization (examples from geometry)

• How we’ve implemented concurrency

• Memory management

• Performance improvement!

48

Geometry…

The CMS detector:

boxes, trapezoids, tubes, cones,

polycones millions of volumes, very

complex hierarchy…

49

It sums up to more than 30% of processing time

A geometry library provides APIs to:

In or out?

collision detection and

distance to enter de object

minimal safe distance to

object

distance to leave object

THE GEANTV PROTOTYPE

VectorizedGeometry

High performance geometry library for next generation

simulation frameworks

Optimised library of primitive and composite solids

Reduce virtual function calls and avoid code

multiplication

Use template code

Introduce data parallelism

Explicit vectorisation (SIMD external libraries +

VecCore abstraction)

APIs for single & many-track navigation

“Inner” vectorisation of complex shapes

Compiler autovectorisation

50

“Inner” Vectorisation

THE GEANTV PROTOTYPE

Vectorising Geometry

Option A (“free lunch”):

put code into a loop and let the compiler vectorize it works only in few cases

Option B (“convince the compiler”):

refactor the code to make it “auto-vectorizer” friendly might work but strongly compiler

dependent

Option C (“use SIMD library”):

refactor the code and perform explicit vectorization using external libraries library

compiler independent

typical geometry task in particle tracking:

find next hitting boundary and get distance to it

1 particle -> 1 result N particles -> N results

THE GEANTV PROTOTYPE

51

Example

A (C++) code fragment to tell whether a particle is inside a volume

THE GEANTV PROTOTYPE

positions/dimensions vectors (x,y,z)
52

Option A: “free lunch”
Start from some existing code

Provide a vector interface and .. hope that compiler vectorise

It doesn’t vectorise!

THE GEANTV PROTOTYPE

positions/dimensions AOS: (x,y,z,x,y,z…)
53

1. copy scalar code to new function ("manual inline")

2. change the data layout (see SOA)

3. remove early - returns

4. manually unroll loops

It works but results depend on compilers choice and choice of optimisation flags

THE GEANTV PROTOTYPE

54

Option B: “convince the compiler”

Option C: “use external library”

Always vectorizes …don’t have to convince the compiler!

• excellent performance (automatically uses aligned data)

• can mix vector context and scalar context (code)

Vc library
THE GEANTV PROTOTYPE

https://github.com/VcDevel55

https://github.com/VcDevel/Vc
https://github.com/VcDevel

Improving vectorisation

Branches distinguish between “static” properties of class instances:

general “tube” class distinguishes at runtime between “FullTube”, “Hollow Tube” ...

Tube HollowTube FullTubePhi

branches are the enemy of vectorization...

HalfHollowTubeHollowTubePhi

THE GEANTV PROTOTYPE

Remove branches introducing a

separate class for each tube

realisation

C++: AbstractTube *t = new FullTube();
56

Reducing branches: C++ templates

• evaluate and reduce “static” branches at compile time

• generate binary code specialised to concrete solid instances

C++: AbstractTube *t = new SpecializedTube<FullTube>();

Performance

and no code duplication!

THE GEANTV PROTOTYPE

➡ vectorisation is efficient

➡ better compiler optimisations of scalar code

➡ less virtual functions (less calls to virtual tables)

➡ “generic programming” philosophy :-)

➡ Usage of SIMD external libraries is straightforward (VecCore abstraction

layer)

➡ Can be used to insure portability 57

VecGeom performance

legacy code

legacy code

• GeantV runs VecGeom scalar navigation in full CMS geometry

• first realistic estimate of overall impact on simulation time: ~1.6 improvement

using only scalar navigation mode

scalar
✓

Simulation of 10 pp events at 7TeV in the CMS detector

THE GEANTV PROTOTYPE

58

VecGeom performance
A set of CPU-intensive navigation methods:

Measure wall time for vector and scalar implementations:

Calculate vector speed-up (wrt scalar) using AVX2 and AVX512

THE GEANTV PROTOTYPE

59

Tube

VecGeom performance
A set of CPU-intensive navigation methods:

Measure wall time for vector and scalar implementations:

Calculate vector speed-up (wrt scalar) using AVX2 and AVX512

THE GEANTV PROTOTYPE

60

Tube

Scalability

A simplified testbed for geometry

navigation:

• Toy detector (typical tracker

geometry)

• Basket approach: particles are

processed in bunches reshuffled

after each step

• “ideal vector” transport: particles are

processed in bunches without any re-

shuffling (“theoretical” best case)

• Comparison to classical navigation

• Measure speedup wrt Nthreads

THE GEANTV PROTOTYPE

61

Speeup vs ROOT(1 thread)

Speedup vs same(1 thread)

Ideal

Basket

ROOT

Ideal

Basket

Scalability (II)
High vectorization intensity achieved for both ideal and basketized cases

AVX-512 brings an extra factor of ~2 to our benchmark

we do understand vectorisation!

THE GEANTV PROTOTYPE

62

Ideal

Basket

Initial approach: static allocation of

workers

• Main thread method as infinite looper

• Worker threads execute a set of chained

tasks (geometry navigation, propagation

in the magnetic field, physics

processes..)

• Data communication by concurrent

queues

• Main queue of baskets of tracks

• Secondary queues of transport

byproducts (I/O, files, final products)

• Use SOA

Concurrency in GeantV

Investigated different ways of scheduling & sharing work

THE GEANTV PROTOTYPE

63

Concurrency in GeantV

Contention prevents scaling to high number of threads

Issue for many cores architectures!

THE GEANTV PROTOTYPE

Creating baskets: main Amdahl source

Reshuffling baskets: constant overhead

scalability with number of threads

Nthreads

64

Geometry: main consumer, will balance with ohysics

in fututre

New GeantV workflow

THE GEANTV PROTOTYPE

65

Initial version New workflow

SOA container: overheads for

reshuffling, concurrency

Hybrid system:

• AOS handling in basketization,

• SOA for dispatching to vector

code

Main basket queue: non-local,

adding contention points

Thread-local data and containers,

relying less on common

concurrency services

System-driven allocation of

resources (threads, memory)

NUMA-aware allocation of

resources, relying on topology

discovery

“Avalanche” memory behavior:

tracks are never released, the full

shower is kept in memory

Smart stack-like behavior, favoring

transporting secondaries/low

energy tracks with priority

New GeantV workflow

THE GEANTV PROTOTYPE

66

91.08

66.17

65.31

122.4

70.59

68.14

0 20 40 60 80 100 120 140

v2

v3

v3	NUMA

V3	VERSUS	V2	SINGLE	THREAD	PERFORMANCE

runApp

CMSApp
29%

44%

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 25 30 35

Sp
e
ed
u
p

#threads

Scalability	V3,	runApp
Xeon(R)	CPU	E5-2630	v3	@	2.40GHz

ideal tpc=N Ncores numa

HYPERTHREADING

Performance tests

A change of perspective

THE GEANTV PROTOTYPE

67 https://indico.cern.ch/event/505613/contributions/2230828/

Performance tuning as a multi-

objective optimisation problem

Many parameters and multiple layers of parallelism: a complex system to tune

The end

68

Summary (I)

We started the GeantV project aiming at a x5 speedup wrt current

simulation software

• Relied on several techniques leveraging compiler and C++ features

• Compiler optimisation (& inlining)

• c++ templating

• Introduced data parallelism and concurrency to profit from the latest

advancements in terms of architecture

• Results in terms of vectorisation and scalability are encouraging and

call for further optimisation

• Multi-node

• …

What we have done

THE END

69

Summary (II)

• Why we worry about performance

• How to approach the problem of improving performance

• Basic concepts of data and task parallelism

• Concurrency, Memory related programming models,

Vectorisation

• A real life example

What you should know now..

THE END

70

Summary (III)

• Details on memory management, bandwidh, cache

usage

• Scaling through many nodes (messaging, resource

sharing, I/O)

• Portability vs performance

What I did not talk about..

THE END

71

Conclusions

There is a large variety of methods and strategies (including

machine learning and genetic algorithms) to use so..

..use your brain!

There is no pre-defined “improving performance algorithm”

Improving code performance is an “epic fight”

THE END

72

Thank you!

THE END

73

Removing bottlenecks: I/O

• First implementation:Send

concurrently data to one thread

dealing with full I/O

• Buffer mode: Send concurrently

local hits connected to memory

files produced by workers to

one thread dealing only with

final merging/writing to disk

• Physics simulation produces ‘hits’ i.e. energy depositions in detector sensitive parts

• Hits are produced concurrently by all the simulation threads

• Thread-safe queues handle asynchronous generation of hits by several threads

• Dedicated output thread transfers the data to storage

THE GEANTV PROTOTYPE

74

scheduler

Physics:

• cross sections

• reactions

GeantV: scheduler

Re-filtered tracks go

back to the scheduler

(re-basketizing)

Re-basketizer

Dispatching

Overhead should be much smaller than locality/SIMD gains

portable without hindering performance

After each step particles move on to different fates ➙ need re-filtering!

75

Geometry

navigation

to different

algorithms

Stage buffer

SimulationStage
virtual DoIt(,)

SimulationStage

Handler 1

Basketizer 1

Handler “i”

Basketizer “I”

virtual Select(track)
virtual DoIt(track)

AddTrack(track,)

scalar

vector

loop
default behavior
to override

e.g. ComptonFilter::DoIt

Select next stage if different from:
SimulationStage::fFollowUp

SimulationStage

Stage buffer

SimulationStage

loop

76

GeantV version 3: A generic vector flow approach

Stage buffer
Stage buffer GeantTrack *

GeantPropagator

GeantTaskData

GeantPropagator

workers

Stack-like bufferlane0 lane1 laneN…

primaries secondaries…

Processing flow
per thread

Event
server

Processing flow per propagator/NUMA node

77

G
eo

m
etryStage

P
ro

p
agatio

n
Stage

P
h

ysicsStage

Event
server

Volume1 Volume2

Basketizer

Scalar code

Vectorized code

Linear
prop.

Basketizer

Field prop.

Basketizer

Process1 Process2

BasketizerHandlers

Stage buffers

Threads on same
propagator/socket

Scalar DoIt() Vector DoIt()

GEANTV SCHEDULING FRAMEWORK REVISITED

Stack-like handling of tracks

Stack-like buffer PreStepStagebuffer

XSecSamplingStagebuffer

GeomQueryStagebuffer

PropagationStagebuffer

ContinuousProcStagebuffer

DiscreteProcStagebuffer

SteppingActionsStagebuffer

Generation 0 (primaries)

Generation 1

Generation 2

Generation 3

Generation 4

Generation 5

Generation 6

Generation 7

Generation > 10

Generation 8

Generation > 10

Generation 0 (primaries)

Generation 1

Generation 2

Generation 3

Generation 4

Generation 5

Generation 6

Generation 7

Generation 8

buffer

buffer

buffer

buffer

buffer

buffer

buffer

Stepping loop

Number of lanes flushed into the stepping loop controlled by: GeantConfig::fNmaxBuffSpill

G
ea

n
tC

o
n

fi
g:

:f
N

st
ac

kL
an

es

GEANTV SCHEDULING FRAMEWORK REVISITED 78

VecGeom Benchmarks on Intel® Xeon Phi™ (KNL)

Everything was compiled with Intel C/C++

compiler 16.0.3

Used “-O3 -xMIC-AVX512”

Contrary to AVX2 benchmarks on

Skylake, UME::SIMD gives best

performance on Knights Landing

Scalar code under Vector API shows

auto-vectorization in many cases

79

• Standard mode (1 independent process per node)
• Always possible, no-brainer
• Possible issues with work balancing (events take different time)
• Possible issues with output granularity (merging may be required)

• Multi-tier mode (event servers)
• Useful to work with events from file, to handle merging and workload

balancing
• Communication with event servers via MPI to get event id’s in common files

Event feeder

Node1

Transport Transport

Numa0 Numa1

Event feeder

Node2

Transport Transport

Numa0 Numa1

Event server

Nodemod[N]

Transport Transport

Numa0 Numa1

Merging service

Event feeder

Node1

Transport Transport

Numa0 Numa1

Event feeder

Node2

Transport Transport

Numa0 Numa1

Event server

Nodemod[N]

Transport Transport

Numa0 Numa1

Merging service

Event feeder

Node1

Transport Transport

Numa0 Numa1

Event feeder

Node2

Transport Transport

Numa0 Numa1

Event server

Nodemod[N]

Transport Transport

Numa0 Numa1

Merging service

MPI

MPI

80

GeantV plans for HPC environment

Virtual vs template
Virtual inheritance: one of the most powerful features of C++
Allow for maximum flexibility
Separation of interface and implementations: clean code
Unified treatment of components behind the same interface
Comply to interfaces: easy mixing of components
E.g. Library developer provides interfaces, user complies to them
when writing implementations

81

Amdahl’s law
“… the effort expended on achieving high parallel processing rates is wasted unless

it is accompanied by achievements in sequential processing rates of very nearly the

same magnitude.” - G.M. Amdahl - 1967

It tells us something about parallel execution: It states the maximum speed up

achievable given a certain problem of FIXED size and serial portion of the program.

IMPROVING PERFORMANCE

82

Option B: “convince the compiler”

Intermediate local

variables

+ if conversion

inline and remove

early returns

not enough!

no

vectorisation

not enough!

no

vectorisation

THE GEANTV PROTOTYPE

83

Option B… continued

AOS to SOA

THE GEANTV PROTOTYPE

84

manually unroll loops

