

Bootstrapping a Real-Time Software Infrastructure for
Quantum Physics

Robert Jördens

M-Labs, http://www.m-labs.hk, mailto:rj@m-labs.hk

David Iliff, CC-BY-SA

http://www.m-labs.hk
mailto:rj@m-labs.hk

• Founded in 2014
• Incorporated in Hong Kong
• Now 4 full-time staff

• Founded in 2017
• Incorporated in Berlin

Python

Touched Python 1.4 in 1997

Python

Stuck with it through university, Ph.D. and
PostDoc

Python

Debian Developer with Python focus

Python

At home in Python-friendly quantuma communities

asimulation, communication, computation, sensing...

Python

Wrote heaps of physicist code in Python

Python

Not proud of most of them

Compiling Python?

(A) ”Prototype in Python, then optimize for speed”

• Algorithms, numerics, data wrestling, concurrency
• Use JITs for CPUs/GPUs: numba, theano, numexpr, tensorflow...
• Refactor/rewrite as extension modules: cython, theano, C/C++...
• Transpile: grumpy (Go)...
• Swap runtime: pypy, jython, grumpy

(A) ”Prototype in Python, then optimize for speed”

• Algorithms, numerics, data wrestling, concurrency

• Use JITs for CPUs/GPUs: numba, theano, numexpr, tensorflow...
• Refactor/rewrite as extension modules: cython, theano, C/C++...
• Transpile: grumpy (Go)...
• Swap runtime: pypy, jython, grumpy

(A) ”Prototype in Python, then optimize for speed”

• Algorithms, numerics, data wrestling, concurrency
• Use JITs for CPUs/GPUs: numba, theano, numexpr, tensorflow...

• Refactor/rewrite as extension modules: cython, theano, C/C++...
• Transpile: grumpy (Go)...
• Swap runtime: pypy, jython, grumpy

(A) ”Prototype in Python, then optimize for speed”

• Algorithms, numerics, data wrestling, concurrency
• Use JITs for CPUs/GPUs: numba, theano, numexpr, tensorflow...
• Refactor/rewrite as extension modules: cython, theano, C/C++...

• Transpile: grumpy (Go)...
• Swap runtime: pypy, jython, grumpy

(A) ”Prototype in Python, then optimize for speed”

• Algorithms, numerics, data wrestling, concurrency
• Use JITs for CPUs/GPUs: numba, theano, numexpr, tensorflow...
• Refactor/rewrite as extension modules: cython, theano, C/C++...
• Transpile: grumpy (Go)...

• Swap runtime: pypy, jython, grumpy

(A) ”Prototype in Python, then optimize for speed”

• Algorithms, numerics, data wrestling, concurrency
• Use JITs for CPUs/GPUs: numba, theano, numexpr, tensorflow...
• Refactor/rewrite as extension modules: cython, theano, C/C++...
• Transpile: grumpy (Go)...
• Swap runtime: pypy, jython, grumpy

Numba

@jit('f8(f8[:])')
def sum1d(a):

total = 0.0
for i in range(a.shape[0]):

total += a[i]
return total

• Parse Python, Infer types, transform
• Emit LLVM IR, compile, dlopen, call
• Good for numerics, GPGPU, and data wrestling

Cython

cimport numpy as np
cimport cython
@cython.boundscheck(False)
@cython.wraparound(False)
cpdef sum1d(np.ndarray[double, ndim=1] a):

cdef double total = 0.0
for i in range(a.shape[0]):

total += a[i]
return total

• Parse Cython (similar to Python), analyze, transform
• Emit C, compile, dlopen, call
• Good for numerics, extensions, wrappers

Theano

import theano

a = theano.tensor.vector("a", dtype="float64")
f = theano.function([a], a.sum())

• Analyze expression graph, algebraic transformations, optimizations
• Emit C, compile, open, execute
• An optimizing CAS, good for numerics, GPGPU, machine learning
• Similar: TensorFlow (Google)

(B) ”Have code in X, want to call from Python”

• X ∈ {C, C++, Fortran, Root... or even some proprietary SDK}
• Cython, C/C++, cffi, ctypes, cppyy, boost.python, swig, pyROOT...
• Swap runtime: jython, grumpy...
• Biggest challanges: types/signatures, GC, redundant code

(B) ”Have code in X, want to call from Python”

• X ∈ {C, C++, Fortran, Root... or even some proprietary SDK}

• Cython, C/C++, cffi, ctypes, cppyy, boost.python, swig, pyROOT...
• Swap runtime: jython, grumpy...
• Biggest challanges: types/signatures, GC, redundant code

(B) ”Have code in X, want to call from Python”

• X ∈ {C, C++, Fortran, Root... or even some proprietary SDK}
• Cython, C/C++, cffi, ctypes, cppyy, boost.python, swig, pyROOT...

• Swap runtime: jython, grumpy...
• Biggest challanges: types/signatures, GC, redundant code

(B) ”Have code in X, want to call from Python”

• X ∈ {C, C++, Fortran, Root... or even some proprietary SDK}
• Cython, C/C++, cffi, ctypes, cppyy, boost.python, swig, pyROOT...
• Swap runtime: jython, grumpy...
• Biggest challanges: types/signatures, GC, redundant code

(C) ”Use Python to extend X”

• Add a REPL to some application: embed + extension
• Add scripting capabilities: embed + extension
• (JIT transpiler, swap runtime)

(C) ”Use Python to extend X”

• Add a REPL to some application: embed + extension

• Add scripting capabilities: embed + extension
• (JIT transpiler, swap runtime)

(C) ”Use Python to extend X”

• Add a REPL to some application: embed + extension
• Add scripting capabilities: embed + extension

• (JIT transpiler, swap runtime)

(C) ”Use Python to extend X”

• Add a REPL to some application: embed + extension
• Add scripting capabilities: embed + extension
• (JIT transpiler, swap runtime)

(D) ”Targetting special runtimes”

• Python for DSLs: embedded systems, specific peripherals, special
architectures

• Transpile/compile/JIT: theano/numba (GPUs), ARTIQ, others

(D) ”Targetting special runtimes”

• Python for DSLs: embedded systems, specific peripherals, special
architectures

• Transpile/compile/JIT: theano/numba (GPUs), ARTIQ, others

(D) ”Targetting special runtimes”

• Python for DSLs: embedded systems, specific peripherals, special
architectures

• Transpile/compile/JIT: theano/numba (GPUs), ARTIQ, others

Don’t be afraid to create DSLs

Migen

History of Migen

• Built a high-level language to describe programmable logic designs
efficiently (2011)

• Originally only to satisfy the need for flexible metaprogramming of
complex dataflows in graphics processors.

• Found out it was excellent for SoC, started MiSoC (2012)
• Now features

• complete powerful language,
• large library of cores,
• own Pythonic simulation and co-simulation toolkit, and
• support for dozens of platforms and toolchains.
• is broadly supported and used in many projects.

Synchronous logic

a = Signal()
b = Signal()
x = Signal()
module.sync += x.eq(a | b)
verilog.convert(module)

Synchronous logic

module top(input sys_clk, input sys_rst);

reg a = 1'd0;
reg b = 1'd0;
reg x = 1'd0;

always @(posedge sys_clk) begin
if (sys_rst) begin

x <= 1'd0;
end else begin

x <= (a | b);
end

end

endmodule

Finite state machines (FSMs)

fsm = FSM()
fsm.act("IDLE",

foo.eq(a & b),
If(start_munging, NextState("MUNGING"))

)
fsm.act("MUNGING",

foo.eq(c),
If(back, NextState("IDLE"))

)

Ion trap
(NIST John Jost)

RF

RF

DC

DC

RF

RF

RF ground

RF ground

Quantum gate sequences (NIST)

FPGA

ion trap

∼10 attenuators

∼50 DAC

∼20 DDS

∼50 GPIO

∼10 motors

∼10 power supplies

∼10 lasers

FPGA

ion trap

∼10 attenuators

∼50 DAC

∼20 DDS

∼50 GPIO

∼10 motors

∼10 power supplies

∼10 lasers

ARTIQ

• ARTIQ is the Advanced Real-Time Infrastructure for Quantum physics.
• An integrated software/gateware/hardware system that controls atomic physics

experiments.
• Developed with the NIST Ion Storage Group (atomic clocks, quantum information,

quantum simulation).
• Managing/scheduling experiments, driving distributed devices,

analyzing/displaying/archiving results.
• Quickly and reliably deployable (Anaconda packages).

ARTIQ graphical user interface

ARTIQ components

master
scheduler,
datasets

graphical UI
submitting, plotting

controls

command line
tools

git repository
holds experiments

logging database
InfluxDB, Grafana

worker
executingspawns,

RPCs

worker
waiting in pipeline

core device
e.g. KC705 FPGA

compiles,
uploads,

RPCs DDS
AD9858

TTL in/out

DDS
AD9914

controller 1

RPCs

NI6733
16 bit DACPXI/PCI

synchronization

controller 2 Thorlabs
TDC/TPZUSB

hardwaregatewaresoftware

ARTIQ components

master
scheduler,
datasets

graphical UI
submitting, plotting

controls

command line
tools

git repository
holds experiments

logging database
InfluxDB, Grafana

worker
executingspawns,

RPCs

worker
waiting in pipeline

core device
e.g. KC705 FPGA

compiles,
uploads,

RPCs DDS
AD9858

TTL in/out

DDS
AD9914

controller 1

RPCs

NI6733
16 bit DACPXI/PCI

synchronization

controller 2 Thorlabs
TDC/TPZUSB

hardwaregatewaresoftware

ARTIQ components

master
scheduler,
datasets

graphical UI
submitting, plotting

controls

command line
tools

git repository
holds experiments

logging database
InfluxDB, Grafana

worker
executingspawns,

RPCs

worker
waiting in pipeline

core device
e.g. KC705 FPGA

compiles,
uploads,

RPCs DDS
AD9858

TTL in/out

DDS
AD9914

controller 1

RPCs

NI6733
16 bit DACPXI/PCI

synchronization

controller 2 Thorlabs
TDC/TPZUSB

hardwaregatewaresoftware

ARTIQ components

master
scheduler,
datasets

graphical UI
submitting, plotting

controls

command line
tools

git repository
holds experiments

logging database
InfluxDB, Grafana

worker
executingspawns,

RPCs

worker
waiting in pipeline

core device
e.g. KC705 FPGA

compiles,
uploads,

RPCs DDS
AD9858

TTL in/out

DDS
AD9914

controller 1

RPCs

NI6733
16 bit DACPXI/PCI

synchronization

controller 2 Thorlabs
TDC/TPZUSB

hardwaregatewaresoftware

ARTIQ components

master
scheduler,
datasets

graphical UI
submitting, plotting

controls

command line
tools

git repository
holds experiments

logging database
InfluxDB, Grafana

worker
executingspawns,

RPCs

worker
waiting in pipeline

core device
e.g. KC705 FPGA

compiles,
uploads,

RPCs DDS
AD9858

TTL in/out

DDS
AD9914

controller 1

RPCs

NI6733
16 bit DACPXI/PCI

synchronization

controller 2 Thorlabs
TDC/TPZUSB

hardwaregatewaresoftware

ARTIQ components

master
scheduler,
datasets

graphical UI
submitting, plotting

controls

command line
tools

git repository
holds experiments

logging database
InfluxDB, Grafana

worker
executingspawns,

RPCs

worker
waiting in pipeline

core device
e.g. KC705 FPGA

compiles,
uploads,

RPCs DDS
AD9858

TTL in/out

DDS
AD9914

controller 1

RPCs

NI6733
16 bit DACPXI/PCI

synchronization

controller 2 Thorlabs
TDC/TPZUSB

hardwaregatewaresoftware

ARTIQ components

master
scheduler,
datasets

graphical UI
submitting, plotting

controls

command line
tools

git repository
holds experiments

logging database
InfluxDB, Grafana

worker
executingspawns,

RPCs

worker
waiting in pipeline

core device
e.g. KC705 FPGA

compiles,
uploads,

RPCs DDS
AD9858

TTL in/out

DDS
AD9914

controller 1

RPCs

NI6733
16 bit DACPXI/PCI

synchronization

controller 2 Thorlabs
TDC/TPZUSB

hardwaregatewaresoftware

ARTIQ components

master
scheduler,
datasets

graphical UI
submitting, plotting

controls

command line
tools

git repository
holds experiments

logging database
InfluxDB, Grafana

worker
executingspawns,

RPCs

worker
waiting in pipeline

core device
e.g. KC705 FPGA

compiles,
uploads,

RPCs DDS
AD9858

TTL in/out

DDS
AD9914

controller 1

RPCs

NI6733
16 bit DACPXI/PCI

synchronization

controller 2 Thorlabs
TDC/TPZUSB

hardwaregatewaresoftware

SINARA

Define a simple timing language

trigger.sync() # wait for trigger input
start = now() # capture trigger time
for i in range(3):

delay(5*us)
dds.pulse(900*MHz, 7*us) # first pulse 5 µs after trigger

at(start + 1*ms) # re-reference time-line
dds.pulse(200*MHz, 11*us) # exactly 1 ms after trigger

• Written in a subset of Python
• Executed on a CPU embedded on a FPGA (the core device)
• now(), at(), delay() describe time-line of an experiment
• Exact time is kept in an internal variable
• That variable only loosely tracks the execution time of CPU instructions
• The value of that variable is exchanged with the RTIO fabric that does

precise timing

Convenient syntax additions

with sequential:
with parallel:

a.pulse(100*MHz, 10*us)
b.pulse(200*MHz, 20*us)

with parallel:
c.pulse(300*MHz, 30*us)
d.pulse(400*MHz, 20*us)

• Experiments are inherently parallel: simultaneous laser pulses, parallel
cooling of ions in different trap zones

• parallel and sequential contexts with arbitrary nesting
• a and b pulses both start at the same time
• c and d pulses both start when a and b are both done (after 20 µs)
• Implemented by inlining, loop-unrolling, and interleaving

Physical quantities, hardware granularity
n = 1000
dt = 1.2345*ns
f = 345*MHz

dds.on(f, phase=0) # must round to integer tuning word
for i in range(n):

delay(dt) # must round to native cycles

dt_raw = time_to_cycles(dt) # integer number of cycles
f_raw = dds.frequency_to_ftw(f) # integer frequency tuning word

determine correct phase despite accumulation of rounding errors
phi = n*cycles_to_time(dt_raw)*dds.ftw_to_frequency(f_raw)

• Need well defined conversion and rounding of physical quantities (time,
frequency, phase, etc.) to hardware granularity and back

• Complicated because of calibration, offsets, cable delays, non-linearities
• No generic way to do it automatically and correctly
• → need to do it explicitly where it matters

Invite organizing experiment components and code reuse

class Experiment:
def build(self):

self.ion1 = Ion(...)
self.ion2 = Ion(...)
self.transporter = Transporter(...)

@kernel
def run(self):

with parallel:
self.ion1.cool(duration=10*us)
self.ion2.cool(frequency=...)

self.transporter.move(speed=...)
delay(100*ms)
self.ion1.detect(duration=...)

RPC to handle distributed non-RT hardware

class Experiment:
def prepare(self): # runs on the host

self.motor.move_to(20*mm) # slow RS232 motor controller

@kernel
def run(self): # runs on the RT core device

self.prepare() # converted into an RPC

• When a kernel function calls a non-kernel function, it generates a RPC
• The callee is executed on the host
• Mechanism to report results and control slow devices
• The kernel must have a loose real-time constraint (a long delay) or

means of re-synchronization to cover communication, host, and device
delays

Kernel deployment to the core device

• RPC and exception mappings are generated
• Constants and small kernels are inlined
• Small loops are unrolled
• Statements in parallel blocks are interleaved
• Time is converted to RTIO clock cycles
• The Python AST is converted to LLVM IR
• The LLVM IR is compiled to OpenRISC machine code
• The OpenRISC binary is sent to the core device
• The runtime in the core device links and runs the kernel
• The kernel calls the runtime for communication (RPC) and interfacing

with core device peripherals (RTIO, DDS)

ARTIQ compiler

parsetree = parse_buffer(source_buffer)
typedtree = asttyped_rewriter.visit(parsetree)
inferencer.visit(typedtree)
cast_monomorphizer.visit(typedtree)
int_monomorphizer.visit(typedtree)
inferencer.visit(typedtree)
monomorphism_validator.visit(typedtree)
escape_validator.visit(typedtree)
iodelay_estimator.visit_fixpoint(typedtree)
constness.visit(typedtree)
devirtualization.visit(typedtree)
artiq_ir = artiq_ir_generator.visit(typedtree)
artiq_ir_generator.annotate_calls(devirtualization)
dead_code_eliminator.process(artiq_ir)
interleaver.process(artiq_ir)
local_access_validator.process(artiq_ir)
invariant_detection.process(artiq_ir)
return llvm_ir_generator.process(artiq_ir)

ARITQ compiler

x = 0
for i in range(2*1000*1000*1000):

x = (x + i) % 101
print(x)

$ clang -O2 sum.c -o sum
$ time ./sum
real 0m13.725s

$ cat sum.py | python -m artiq.compiler.testbench.jit
time 15.934627326998452

pythonparser

• Python source parser/rewriter/emitter/diagnostic engine
• Ideal for tooling

• Has its own AST, similar to Python’s builtin ast
• All versions python 2.6–3.5
• Cross-parsing: parse python 2.7 code with a python 3.5 runtime (and

rewrite it)
• Pure python: build self-hosting tools with it!
• Rewrite engine for altering code (refactoring tools)

pythonparser

• Python source parser/rewriter/emitter/diagnostic engine
• Ideal for tooling
• Has its own AST, similar to Python’s builtin ast

• All versions python 2.6–3.5
• Cross-parsing: parse python 2.7 code with a python 3.5 runtime (and

rewrite it)
• Pure python: build self-hosting tools with it!
• Rewrite engine for altering code (refactoring tools)

pythonparser

• Python source parser/rewriter/emitter/diagnostic engine
• Ideal for tooling
• Has its own AST, similar to Python’s builtin ast
• All versions python 2.6–3.5

• Cross-parsing: parse python 2.7 code with a python 3.5 runtime (and
rewrite it)

• Pure python: build self-hosting tools with it!
• Rewrite engine for altering code (refactoring tools)

pythonparser

• Python source parser/rewriter/emitter/diagnostic engine
• Ideal for tooling
• Has its own AST, similar to Python’s builtin ast
• All versions python 2.6–3.5
• Cross-parsing: parse python 2.7 code with a python 3.5 runtime (and

rewrite it)

• Pure python: build self-hosting tools with it!
• Rewrite engine for altering code (refactoring tools)

pythonparser

• Python source parser/rewriter/emitter/diagnostic engine
• Ideal for tooling
• Has its own AST, similar to Python’s builtin ast
• All versions python 2.6–3.5
• Cross-parsing: parse python 2.7 code with a python 3.5 runtime (and

rewrite it)
• Pure python: build self-hosting tools with it!
• Rewrite engine for altering code (refactoring tools)

pythonparser

Precise location/range information for every token, including commets,
sub-nodes

pythonparser

Precise location/range information for every token, including commets,
sub-nodes

pythonparser

Precise location/range information for every token, including commets,
sub-nodes

pythonparser

• https://github.com/m-labs/pythonparser, MIT license
• grumpy: Python to Go source code transcompiler and runtime

• Developed by Google to scale youtube Python frontend (CPython2.7)
• Transpile Python and use the Go runtime
• Avoid Python concurrency issues

$ build/bin/grumpc hello.py > hello.go
$ go build -o hello hello.go

• ARTIQ

https://github.com/m-labs/pythonparser

pythonparser

• https://github.com/m-labs/pythonparser, MIT license
• grumpy: Python to Go source code transcompiler and runtime

• Developed by Google to scale youtube Python frontend (CPython2.7)
• Transpile Python and use the Go runtime
• Avoid Python concurrency issues

$ build/bin/grumpc hello.py > hello.go
$ go build -o hello hello.go

• ARTIQ

https://github.com/m-labs/pythonparser

pythonparser

• https://github.com/m-labs/pythonparser, MIT license
• grumpy: Python to Go source code transcompiler and runtime

• Developed by Google to scale youtube Python frontend (CPython2.7)
• Transpile Python and use the Go runtime
• Avoid Python concurrency issues

$ build/bin/grumpc hello.py > hello.go
$ go build -o hello hello.go

• ARTIQ

https://github.com/m-labs/pythonparser

(Experimental) physicists and computers...

They call it a ”high-viscosity language”

