

FCC-ee top-up injection

Masamitsu Aiba, PSI
Thanks to B. Goddard, K. Oide,
Y. Papaphilippou and F. Zimmermann
29.08.2017
Topical Workshop on
Injection and Injection Systems,
Berlin, Germany

Introduction (1)

- Future Circular Collider (FCC)
 - 100-km-scale collider for physics beyond LHC (27 km, 14 TeV c.m.)
 - FCC-ee as a possible first step for Z/W/H/ttbar (up to 350 GeV c.m.)
 - FCC-hh aiming at high energy frontier (100 TeV c.m.)
 - FCC-he as an upgrade option

Figure taken from FCC-ee design study homepage: http://tlep.web.cern.ch/
See also https://fcc.web.cern.ch/

This presentation is about top-up injection into FCC-ee. Two more talks by T. Tydecks and B. Harer on the injector chain and FCC-ee collider optics tomorrow.

Introduction (2)

FCC-ee parameters

]	Parame	ters 2017	(Prelin	ninary)	*	(FCC) thee ha	
Design		2017					
Circumference	[km]	97.750					
Arc quadrupole scheme		twin aperture					
Bend. rad. of arc dipoles	[km]	10.747					
Number of IPs / ring		2					
Crossing angle at IP	[mrad]	30					
Solenoid field at IP	[T]	± 2					
ℓ*	[m]	2.2					
Local chrom. correction		y-plane with crab-sext. effect					
RF frequency	[MHz]	400					
Total SR power	[MW]	100			■ Base		
Beam energy	[GeV]	45.6	80	120	175	The state of the	
SR energy loss/turn	[GeV]	0.036	0.34	1.72	7.80		
Long. damping time	[ms]	414	76.8	22.9	7.49	s Z	
Current/beam	[mA]	1390	147	29.0	6.4		
Bunches/ring		70760	7280 (4540)	826 (614)	64 (50)		
Particles/bunch	$[10^{10}]$	4.0	4.1 (6.6)	7.1 (9.6)	20.4 (26.0)		
Arc cell		60°/60°		90°/90°		₹ 10 ³⁵	
Mom. compaction α_p	$[10^{-6}]$	14.79		7.31		W±	
β -tron tunes ν_x / ν_y		269.14 /267.22		389.08 / 389.18	3	2	
Arc sext. families		208		292		T tt	
Horizontal emittance ε_x	[nm]	0.267	0.28	0.63	1.34	3 Zh	
$\varepsilon_y/\varepsilon_x$ at collision	[%]	0.38	0.36	0.2	0.2		
β_x^* / β_y^*	[m / mm]	0.15 / 1		1 / 2 (0.5 / 1)		1034	
Energy spread by SR	[%]	0.038	0.066	0.099	0.147	102	
Energy spread SR+BS	[%]	0.073	0.072 (0.091)	0.106 (0.122)	0.193 (0.212)	E _{beam} (GeV)	
Hor. beam-beam ξ_x		0.008	0.080 (0.046)	0.081 (0.053)	0.082 (0.049)		
Ver. beam-beam ξ_y		0.106	0.141 (0.141)	0.140 (0.140)	0.140 (0.138)		
RF Voltage	[MV]	255	696	2620	9500		
Bunch length by SR	[mm]	2.1	2.1	2.0	2.4	The second of the Which have if you	
Bunch length SR+BS	[mm]	4.1	2.3 (2.9)	2.2 (2.5)	2.9 (3.5)	*The numbers in () correspond to "high-lumi" option.	
Synchrotron tune ν_z		-0.0413	-0.0340	-0.0499	-0.0684	+The luminosities are geometrical ones, no dynamics involved.	
RF bucket height	[%]	3.8	3.7	2.2	10.3		
Luminosity/IP	$[10^{34}/{\rm cm}^2{\rm s}]$	137	16.4 (30.0)	4.6 (8.0)	1.35 (2.09)		

Slide taken from K. Oide's presentation at FCC Week 2017:

https://indico.cern.ch/event/556692/

Introduction (3)

- Challenges in FCC-ee top-up injection
 - Collider ring optics is designed/optimised for achieving high luminosity
 - Luminosity lifetime of ~1 hour at 175 GeV
 - → Top-up injection is essential and should be robust
 - Very squeezed β* to maximise the luminosity →
 Strong nonlinear elements required → Limited dynamic aperture

Requirements/Assumptions

- To start design, the following requirements and assumptions were set:
 - Similar emittance in booster and collider (1.3 nm @ 175 GeV)
 - ~1.5 km straight section available in collider
 - 5σ clearance for high injection efficiency
 - Dynamic aperture: ~15σ for on-energy, 5σ up to +/-2% off-energy
 - cf. SLS: \sim 15 mm dynamic aperture corresponds to \sim 100 σ
 - Septum thickness
 - 5 mm (3 mm + mechanical margin) or
 - Wire septum ~0.2 mm (~20 um + mechanical margin)
 - Widely used in hadron machine but never used for lepton beams (?)

Off-axis or On-axis?

- Collider prefers residual synchrotron oscillation (on-axis injection) because lower background signal is expected
- Higher injection efficiency was observed at LEP with on-axis injection (Synchrotron phase space injection)

First turn injection beam trajectory, off-axis (top) and on-axis (bottom) at LEP

Figure 3: Optimized Horizontal First Turn Trajectory for Betatron Injection of Positrons into LEP.

Figure 4 : Optimized Horizontal First Turn Trajectory for Synchrotron Injection of Positrons with $\Delta P/P$ at -0.6%

Injection efficiency for off-axis and on-axis injection

Figures taken from P. Collier, "Synchrotron phase space injection into LEP", PAC 1995

- Applicable schemes
 - Conventional scheme (with kicker bump), both off-axis and on-axis
 - Multipole kicker injection, both off-axis and on-axis
- Discarded schemes
 - Swap-out injection
 - Discarded(?) due to practical difficulties: preparing full current bunches, swapping several MJ beams...
 - Longitudinal injection
 - High radiation loss (7.8 GeV at 175 GeV!) → Discarded due to too high RF bucket exceeding the offmomentum dynamic aperture
 - Kickerless injection
 - Injection without kicker like in Cyclotron
 - Discarded due to limited off-momentum dynamic aperture
 - Also only applicable to high energy operation modes

Longitudinal injection (discarded)

Kickerless injection in long. phase space, 175 GeV(discarded)

Conventional injection (1)

- Dynamic aperture required vs. beta function at septum
 - Plot for clearance of 5σ
 - Optimum injection beam matching is assumed

- Off-axis injection
- FODO cell
 - 200 m cell length
 - 90 deg/cell, Beta ~312 m
 - With dispersion suppressor
- Bump kicker field
 ~0.012 Tm @ 175 GeV
- Wire septum, Vint=11 MV

Conventional injection (3)

- On-axis injection
- FODO cell
 - 200 m cell length
 - 90 deg/cell, Beta ~312 m
 - Dx=0.8 m at septum
- Bump kicker field
 ~0.025 Tm @ 175 GeV
- Wire septum, Vint=11 MV

Multipole kicker injection (1)

Beams "packed" in phase space

Stored beam emittance is increased by the kicker field...

Multipole kicker injection (2)

- Off-axis injection
- FODO cell
 - 200 m cell length
 - ~70 deg/cell, Beta ~450 m
 - With dispersion suppressor
- Nonlinear kicker, 0.025
 Tm on plateau

Optics and orbits

Multipole kicker injection (3)

- On-axis injection
- FODO cell
 - 200 m cell length
 - 90 deg/cell, Beta ~380m
 - Dx = 0.8 m
- Nonlinear kicker, 0.03
 Tm on plateau

Injection kicker/septum pulse length

PAUL SCHERRER INSTITUT

How to fill the collider ring with ~70k bunches (Z, 45 GeV)!

Although the collider ring is large ($^{\sim}100 \text{ km}$), kicker/septum pulse length of $^{\sim}10 \text{ }\mu\text{s}$ is enough with multiple beam transfers

Injection specifications (ttbar)

Parameters	Conventional injection (on-/off-energy)	Multipole kicker injection (on-/off-energy)
Minimum beta function at septum and kicker (m)	310/310 or 1200/1800	~400 m
Type of kicker	Dipole kickers	Nonlinear kicker
Integrated kicker field (Tm)	0.012/0.025 or weaker	0.025/0.03 (Plateau)
Type of (last) septum	Wire septum or 5-mm septum	5-mm septum
Kicker/septum flat-top (μs)	~10	
Required DA (σ)	<~15/5@-1.8%	15/5@-2%

Remarks:

- Required kicker field strengths are modest values even though high beam energy (175 GeV)
- Wire septum can be avoided, but it minimises dynamic aperture required in the off-axis conventional injection, thus supporting low β^* optics
- Need to go through other operation modes; Off momentum dynamic aperture does not reach to ±2% in Z mode...

Some ideas

"Compensation septum" for conventional injection (1)

- Reconsideration of magnetic septum assumptions
 - Present assumption: 3 mm blade (5 mm septum thickness with margin)
 - To achieve strong enough (~0.5 T) field to inflect the injection beam
 - The blade should be thick enough to suppress stray field
 - Thinner septum?
 - Field of ~0.1 T is enough because of a large beta function available
 - Allow (some) stray field but compensate for by other means rather than by thick blade
 - With a lower field and a less stringent stray field criterion, the thickness can be thinner
 - Possible revised assumption: 1.5 mm including mechanical margin
 - Easy for conventional injection scheme (e.g. no wire septum and easy-handling beta)

"Compensation septum" for conventional injection (2)

- "Compensation septum" (or "Dummy septum")
 - Put another septum to compensate for the stray field disturbance
 - 2π injection orbit bump with Compensation and Injection septa at the peak of bump with a π phase advance in-between
 - Stray field generate a *closed* π bump \rightarrow No bump leakage in principle when the two septa are identical
 - Orbit bumpers and septa do not necessarily have same pulse duration/shape

"Compensation septum" for conventional injection (3)

Optics and orbits for on-energy injection with thin septum and compensation septum

"Compensation kicker" for multipole kicker injection

- Similar approach to "Compensation septum"
 - With π phase advance between two kickers, the disturbance to the beam is compensated for (up to any high multipole)

Beams in phase space

Nonlinear kicker with magnetic material?

 Possible nonlinear kicker with two C-shape dipole kickers:

Two C-shape kickers

Dipole kicker to cancel the dipole component at the centre

Field profile

(Poisson computation for static field)

"Quasi-matching"

- Multipole kicker gives strong defocusing to the injection beam
 - Nonlinear kicker is one of solutions
 - Another solution may be matching the injection beam, considering the defocusing
 - However, matching to cancel the defocusing is difficult, if not impossible

- "Quasi-matching": i.e. approximate matching, keeping the beam orientation (α/β) in phase space

Example from SLS-2 injection:

	Paramters at Septum		
	Beta (m)	Alpha	
Optimum if no			
defocusing	8.7	2.94	
Optimum with			
defocusing	65.3	33.3	
"Quasi matching"	13.1	6.67	

Multipole kicker injection with quasi-matching might be applicable to FCC-ee injection? To be studied.

Summary

- Conventional scheme and Multipole kicker injection are applicable to FCC-ee top-up injection
 - On-axis injection is preferable in colliders
 - Applicable to higher beam energy operation modes
 - Off-energy dynamic aperture is not enough for lower beam energy operation modes
 - In spite of very high beam energy, injection kicker specifications are modest thanks to the large beta function available
 - Possible improvements of these schemes are under investigation

Backup slides

SPS ZS septum

- 25 um wires
- Field 100 kV/cm
- 3 m * 5 units
- Integrated Volt. 150 MV
- Used for 450 GeV p-beam extraction

^{*} Figures taken from B. Goddard and P Knaus, Proc. of EPAC 2000, p.2255