Longitudinal injection into low-emittance ring: A novel scheme for SOLEIL upgrade

Marie-Agnès Tordeux
and Accelerators & Engineering Division
I. Introduction
II. Longitudinal injection
III. New scheme
IV. Challenges
V. Summary
I. Introduction

Low-\(\varepsilon\) lattice investigation is under way @ SOLEIL, with a new step of increasing the symmetry (one type of straight section). 2 kinds of lattices are under study:

- \(\varepsilon_x > 100\) pm.rad with a large dynamic aperture (off-axis injection)
- \(\varepsilon_x < 100\) pm.rad with small dynamic aperture (on-axis injection).

This talk deals with the latter case.

On-axis injection
This presentation aims to propose an alternative solution to On-axis injection, other than:
- the swap out method.
- the use of a very fast transverse kicker.

Longitudinal injection
It starts with the longitudinal injection scheme developed by the SLS group.
II. Longitudinal injection: recall of SLS scheme

- Applied to MAX IV

A transparent injection is presented where the injected beam is longitudinally separate from the stored beam by $\Delta \varphi = -\pi$.

The longitudinal acceptance phase-space looks like a "golf club" and allows a specific off-momentum beam to be naturally trapped and merged into the circulating beam.

M. Aïba et al., PRST AB 18, 020701 (2015)

Injected beam from Linac $\varepsilon_{x/z} = 1.7 \text{ nm.rad}, \sigma_z = 5 \text{ ps}$
II. Longitudinal injection: recall of SLS scheme

- applied to MAX IV

100 MHz RF system: bunch spacing = 2 x 5 ns

As a first step, short pulse kickers place the injected beam on-(chromatic) axis

M. Aïba et al., PRST AB 18, 020701 (2015)
II. Longitudinal injection: recall of SLS scheme

- applied to SOLEIL Upgrade:

SOLEIL synchrotron
- Linac injector: 100 MeV
- Booster: 157 m outside SR tunnel
- Storage Ring: 354 m, 2.75 GeV
- RF system: cryogenic, 352.2 MHz
II. Longitudinal injection: recall of SLS scheme

- 45 pm.rad

Example of prospect lattice with very low H. emittance.

SOLEIL synchrotron
- Linac injector: 100 MeV
- Booster: 157 m outside SR tunnel
- Storage Ring: 354 m, 2.75 GeV
- RF system: cryogenic, 352.2 MHz

16 periods, 354 m, 2.75 GeV
Working point = (73.43, 42.11)
\((\beta_x, \beta_z)_{sp} = (2.5, 2.8)\) m with straight = 5.655 m
Max \(K_1 = 10 \text{ [m}^{-2}\)] \(=> 92 \text{ T/m @2.75 GeV}
Combine sextupole into quad and bends
Bends: (0.65 T, 49 T/m, 7183 T/m^2) @2.75 GeV

Hung Chun Chao, IPAC 2017
II. Longitudinal injection: recall of SLS scheme

- applied to SOLEIL Upgrade

Motion in the longitudinal phase space (Accelerator Toolbox tracking)

Taking into account radiation and damping.
II. Longitudinal injection: recall of SLS scheme

- applied to SOLEIL Upgrade

Motion in the longitudinal phase space (Accelerator Toolbox tracking)

In the case of SOLEIL, rise/fall time requirement for the fast transverse kicker = 1.4 ns for a few mrad strength.

It is far beyond the today state of the art.

352 MHz RF system: bunch spacing = 2 x 1.4 ns
III. Longitudinal injection: new scheme

Instead, we propose to use 2 kinds of “Non-Linear Kicker” (NLK):

- A Transverse Non-Linear Kicker (or Multipole Injection Kicker MIK) with no constraint in duration, to place the injected beam on a chromatic orbit and then perform an on- (chromatic) axis injection. It assumes:
 - The injected beam is off-momentum (δ_{inj})
 - It exists a H. dispersion bump in the lattice
 - This bump may be especially created @ MIK position \rightarrow breaks the symmetry of the ring \rightarrow the lower bump the better
 - Or use of the natural “low” dispersion

In both cases, high δ_{inj} is needed to get a reasonable chromatic orbit @ MIK (chromatic Closed Orbit $>$ 4 mm).

- A Longitudinal Non-Linear Kicker to improve the capture of this high momentum beam.
III. Longitudinal injection: new scheme

- Create a “longitudinal NLK”

 = Additional RF pulse that will:
 - Reduce the injected off-momentum deviation as quickly as possible and let enter the particles into the longitudinal bucket
 - Keep the stored beam unaffected, in terms of centroid position and bunch length.
III. Longitudinal injection: new scheme

- Create a “longitudinal NLK”

= Additional RF pulse that will:
- Reduce the injected off-momentum deviation as quickly as possible and let enter the particles into the longitudinal bucket
- Keep the stored beam unaffected, in terms of centroid position and bunch length.

Main 352 MHz RF pulse
\[V_{\text{main}} = 1 \text{ MV} \]
\[U_0 = 360 \text{ keV/turn} \]
III. Longitudinal injection: new scheme

- Create a “longitudinal NLK”
 - Additional RF pulse that will:
 - Reduce the injected off-momentum deviation as quickly as possible and let enter the particles into the longitudinal bucket
 - Keep the stored beam unaffected, in terms of centroid position and bunch length.

- Main 352 MHz RF pulse
 \[V_{\text{main}} = 1 \text{ MV} \]
 \[U_0 = 360 \text{ keV/turn} \]

- Additional 352 MHz pulse
 - Shifted by \(\varphi_s \)
 \[V_{\text{add}} \sim 1 \text{ MV} \]

- Correction by 3\(^{rd}\) harmonic
 \[V_{3\text{rd}} = V_{\text{add}} / 3 \]
III. Longitudinal injection: new scheme

- Create a “longitudinal NLK”
 - Additional RF pulse that will:
 - Reduce the injected off-momentum deviation as quickly as possible and let enter the particles into the longitudinal bucket
 - Keep the stored beam unaffected, in terms of centroid position and bunch length.

![Diagram showing phase space and RF pulse](image)

- Stored beam doesn’t see any change
- Off-phase particles see an additional kick.
- New total RF pulse
- Process must be stopped as soon as injected particles reach the synchronous phase
III. Longitudinal injection: new scheme

- **Create a “longitudinal NLK”**

 = Additional RF pulse that will:
 - Reduce the injected off-momentum deviation as quickly as possible and let enter the particles into the longitudinal bucket
 - Keep the stored beam unaffected, in terms of centroid position and bunch length.

In practice, stored beam will be lengthened with the 3rd harmonic, which suggests that 3 HC already exists and can be also used for NLK scheme.

Main RF pulse
III. Longitudinal injection: new scheme

- Create a “longitudinal NLK”
 - Additional RF pulse that will:
 - Reduce the injected off-momentum deviation as quickly as possible and let enter the particles into the longitudinal bucket
 - Keep the stored beam unaffected, in terms of centroid position and bunch length.

In practice, stored beam will be lengthened with the 3rd harmonic, which suggests that 3 HC already exists and can be also used for NLK scheme.

New total RF pulse
III. Longitudinal injection: new scheme

- Effect of the “longitudinal NLK”

 - Standard V_{RF}

Particle with zero betatron amplitude
III. Longitudinal injection: new scheme

- Effect of the “longitudinal NLK”

- Switch on $V_{RF \text{ add}} = 1 \text{ MV}$,
- Switch off when particle passes φ_s

![Graph showing the effect of the "longitudinal NLK" on particle injection.](image)
III. Longitudinal injection: new scheme

- **Effect of the “longitudinal NLK”**

Simulate realistic injected beam from Booster:

Considering a basic MBA lattice for Booster with $\varepsilon_x = \varepsilon_z = 10 \text{ nm.rad}$, $\sigma_s = 35 \text{ ps}$

- Switch on $V_{RF \text{ add}} = 1 \text{ MV}$,
- Switch off when “mean phase” = φ_s
III. Longitudinal injection: new scheme

- Effect of the “longitudinal NLK”

Simulate realistic injected beam from Booster:

Considering a basic MBA lattice for Booster with $\varepsilon_x = \varepsilon_z = 10 \text{ nm.rad}$, $\sigma_s = 35 \text{ ps}$

- Considering the stored beam lengthening with the 3rd HC.

Injected beam with adapted β functions

Plot every 50 turns
III. Longitudinal injection: new scheme

- **Modeling realistic rise and fall time of the additional RF pulses**

 Switch on / off takes into account the loaded quality factor Q_L of cavities:

 $$\tau_L = \frac{2 Q_L}{2 \pi f_{RF}}$$

 One must consider:
 - How to get similar τ_L for 3rd HC compared to main RF
 - The phase control of main RF during voltage change

 ![Graph showing $V_{RF\, add}$ seen by the ‘central’ particle during injection process](chart)

 SOLEIL Upgrade, same cryogenic 352 MHz cavities as now

 $Q_L < 10^5$, $\tau_L < 100 \, \mu s \sim 80$ turns

 ![Graph showing injection process](chart)
III. Longitudinal injection: new scheme

- Modeling realistic rise and fall time of the additional RF pulses

- No significant impact on the injection efficiency
 \[R_{\text{injection}} = 83\% \]
III. Longitudinal injection: new scheme

Performance of the scheme:

1) Dependency on injected beam bunch length:
The shorter bunch length, the smaller the oscillation amplitude in δ during injection process.

$\sigma_s = 35$ ps

$\sigma_s = 5$ ps

Same injection rate, but dissymmetry in momentum oscillation becomes larger when bunch length decreases.

$\varepsilon_{x\text{ inj}} = \varepsilon_{z\text{ inj}} = 10 \text{ nm.rad}$

Plot every 50 turns
III. Longitudinal injection: new scheme

- Performance of the scheme:
 2) Dependency on injected beam emittances:

 Limitation comes from transverse acceptance at high momentum.

 \[
 \begin{align*}
 \varepsilon_{x\text{ inj}} &= \varepsilon_{z\text{ inj}} = 10 \text{ nm.rad} \\
 \varepsilon_{x\text{ inj}} &= \varepsilon_{z\text{ inj}} = 1 \text{ nm.rad}
 \end{align*}
 \]

 = same behaviour in longitudinal plane
 But losses at high momentum disappear.

 \[\sigma_s = 5 \text{ ps}\]
IV. Longitudinal injection: challenges

- Increase dynamic aperture for large positive energy deviation.

New lattice optimized in terms of off-momentum transverse dynamic acceptance → confirms origin of losses at high momentum.

\[\delta = +6\% \]

TRACY III code (10^3 turns)

![Graph showing amplitude vs. momentum for different lattices](image)

- Lattice 45 pm.rad
- Optimized Lattice
IV. Longitudinal injection: challenges

- Take advantage of the dissymmetric energy oscillation to relax constraints on the DA for negative momentum.
 → Investigations are foreseen, using MOGA with specific objectives.

\[\varepsilon_{x\text{ inj}} = \varepsilon_{z\text{ inj}} = 10 \text{ nm.rad, } \sigma_s = 5 \text{ ps} \]
VI. Summary

Starting from the longitudinal injection described by SLS group, a novel scheme is proposed for an on-axis injection.

- It does not involve any fast transverse kicker, but a MIK with no time constraint.
- It uses cavities already installed: main RF and its 3rd harmonic with manipulation of phase and power during injection process.
- It doesn’t affect the stored beam, in terms of phase and bunch length.
- It aims at enhancing capturing of off-momentum particles by kicking them into the longitudinal bucket.
VI. Summary

Challenges:

- In SOLEIL case, adapt the present ‘high emittance’ Booster in order to reduce injected emittance and pulse length.

- Optimize the off-momentum dynamic aperture of the low-emittance lattice for (only) high positive momentum. Use of MOGA for this dissymmetric optimization.

- Ensure the appropriate horizontal dispersion @ MIK position to get the ‘few mm’ chromatic orbit, without reducing off-momentum DA.

- RF issues
Many thanks to Dr Alex Chao for very fruitful discussions, P. Marchand and F. Ribeiro (SOLEIL) for first analysis of RF manipulation feasibility, and the rest of the Accelerator Group for support..

Thank you for your attention!
备份幻灯片

\(\epsilon_x = 45 \text{ pm.rad} \)

\(\epsilon_x = 39 \text{ pm.rad} \)

OPA code