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Injector working group

 K. Harkay – PAR/Booster Machine Manager

 J. Calvey – Deputy PAR/Booster Machine Manager

 C-Y. Yao- injector expert, semi-retired

 Physics team: M. Borland, J. Dooling, L. Emery, R. Lindberg,  
V. Sajaev, N. Sereno, Y.-e. Sun, Y.-P. Sun, A. Xiao, U. Wienands

 RF group: T. Berenc, D. Horan, A. Goel, G. Waldschmidt

 Engineering, Software, Controls, & Operations Team:  A. Brill, J. 
Carter, H. Bui, R. Flood, G. Fystro, A. Hillman, L. Morrison, S. 
Pasky, A. Pietryla, T. Puttkammer, H. Shang, R. Soliday, J. Wang, F. 
Westferro, S. Xiang, S. Xu
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Outline

 Overview of APS injector complex

 High charge issues in the particle accumulator ring:

– Bunch length blowup

– Beam capture in 12th harmonic cavity

– Longitudinal instability

– Ion trapping

 High charge issues in the booster synchrotron:

– Injection efficiency

– Beam loading compensation

– RF Frequency ramp
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Introduction

 APS injectors were originally designed to deliver up to 6 nC.  

– Typical operation: 2-3 nC

 R&D is underway to study the high-charge performance. 

The charge and beam quality are limited primarily by 

longitudinal effects.

 So far we have achieved 16 nC in PAR, 12 nC in booster

 The present injectors are capable of supporting 200 mA in a 

total of 72 to 324 bunches (i.e., 2.5 nC to 11 nC).

 Improvements to support 200 mA in 48 bunches (16 nC) are 

being developed.
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APS Injector Complex

Particle accumulator ring (PAR) (375 MeV)
 Single bunch; 2-4 nC, 2-Hz rep rate

 Captures linac pulses in RF1 (9.8 MHz);    
compresses damped beam in RF12 (117 MHz); 
bunch cleaning system

Booster (7 GeV)
 Single bunch; 2 Hz rep rate

 Magnet ramp linear; RF 
ramp ~E4 (352 MHz)

 Natural emittance: 132 nm

 Off-momentum emit: 87 nm

Booster-to-storage ring 
transport line (BTS)

Linac (375 MeV)
 1 nC/pulse; 30 Hz rep rate

 Thermionic RF guns: RG1, RG2 
(1 hot spare)

RG2 RG1         PCG

 In normal operations, 
injector delivers 2-4 nC 
single bunch charge to the 
storage ring at 2-Hz rate.
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APS Injectors: High Charge

Particle accumulator ring (PAR) (375 MeV)
 Single bunch; up to 20 nC, 1-Hz rep rate

 Captures linac pulses in RF1; compresses damped 
beam in RF12 (117 MHz); bunch cleaning system

Booster (6 GeV)
 Single bunch; 1 Hz rep rate

 Magnet ramp linear; RF 
ramp ~E4 (352 MHz)

 Natural emittance: 97 nm

 Off-momentum emit: 64 nm

Booster-to-storage ring 
transport line (BTS)

Linac (375 MeV)
 1 nC/pulse; 30 Hz rep rate

 Thermionic RF guns: RG1, RG2 
(1 hot spare)

RG2 RG1         PCG

 Linac essentially 
unchanged

 PAR and booster run at     
1-Hz rep rate, which allows 
for accumulation up to 20 
nC in the PAR 

 Booster ramps to 6 GeV
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PAR overview
 Modeled after DESY’s PIA ring

 1 nC bunches from linac injected every 33 ms

 1 Hz mode developed to allow accumulation 

for 750 ms

 At 750 ms, 12th harmonic cavity is turned on, 

shortening the bunch to ~350 ps (zero 

current) 

 Highest charge achieved in PAR: ~16 nC

 Concerns for high charge operation:

– Reduced injection efficiency at very high charge                 

(> 16 nC injected)

– Fundamental RF1 trips, believed caused by 

beam loading and HOMs presented to non-

isolated amplifier

– Significant bunch length blowup, accompanied 

by  longitudinal instability. 

– Vertical beam size growth, likely due to ion 

trapping
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PAR bunch length blowup
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PDR 4-3.13.2 J. Dooling K. Harkay

 Data were acquired with a photodiode signal, calibrated using a laser and streak 
camera.

 Plot on left shows average bunch length over 10 turns at 900 ms in cycle. There is a 
linear trend towards twice the bunch length (potential well distortion), as well as 
instances of extreme bunch length blowup due to an instability (Robinson-type or 
microwave).

 Plot on right shows bunch length before and after RF 12 capture (750 ms). Sawtooth
instability can be seen at 10, 12, 15 nC. 



PAR harmonic tuning

 12th harmonic cavity detuning and phase must be carefully 

optimized for good capture at high charge

– Bad choice of parameters leads to double bunching and/or instability

– Left: sawtooth instability after RF12 turn-on (dashed line) measured 

by new turn-by-turn BPM (in a dispersive section)

– Right: double-bunching in PAR-to-booster transfer line
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PAR harmonic tuning

 12th harmonic cavity detuning and phase must be carefully 

optimized for good capture at high charge

– Both problems mitigated with good choice of tuning parameters
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PAR longitudinal instability
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 Beam is longitudinally unstable before 12th harmonic turn-on

– Multiple synchrotron sidebands observed after accumulation (dotted line)

– Bunch is long; instability is consistent with long-range, resonator impedance.

 With proper tuning of 12th harmonic detuning and phase, can stabilize beam 

after turn-on (dashed line)

 At higher charge, 12th harmonic synchrotron tune is visible after turn-on

– Seems to persist until next turn, probably AGC loop is not fast enough

 At very high charge, beam remains unstable for entire cycle



Modeling of PAR beam loading

 Modeling of PAR beam loading is in early stages

 Beam loading in 12th harmonic cavity is significant, even 

when it's detuned

– Simple calculation gives ~14 kV at 20 nC and -140 kHz

– (compared to ~22 kV cavity voltage when RF12 enabled)

– Preliminary simulations suggest that the cavity could be used 

passively at very high charge

 Things to model:

– Beam loading in both cavities

– Harmonic capture in the presence of beam loading

– Cavity HOMs (measurements are underway)

– Efficacy of cavity feedback loops at high charge

– Develop PAR impedance model
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PAR ion effects

 Trapped ions cause a positive tune 

shift with charge, which increases 

along the PAR cycle.  This effect has 

been reproduced with simulations 

[1,2]

 We haven’t observed coherent ion 

instability, and don’t anticipate it at 

high charge

 We believe ions are responsible for 

vertical beam size blowup with charge

– Effect was stronger when 

pressure was high after a vacuum 

intervention

– Plan to model this with 

IONEFFECTS element in ELEGANT
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Measured PAR Vertical Beam Size

[1] L. Wang et al, PRST-AB 14, 084401 (2011).

[2] J. Calvey et al. THPOA14, Proc. NAPAC16.



PAR plans

 Continue to study longitudinal blowup / instability with modeling, as well 

as improved diagnostics

– Photodiode and streak camera

– Detailed measurements of cavity HOMs

– BPMs with turn-by-turn capability (2 so far)

– Upgrade of RF diagnostics is underway

 Absorptive filter to cure fundamental RF trips (to be installed this fall)

 Mitigate vertical beam size blowup, if needed

– Beyond vacuum conditioning, ion trapping could be mitigated further: e.g., 

NEG coating, adding more pumps, or clearing electrodes.

 Test alternate modes of operation:

– Operate RF12 in passive mode

– Operate at higher beam energy
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 Ramp from 375 MeV to 7 GeV in 225 ms

 Two lattices studied:

– Original (97 nm natural emittance at 6 GeV)

– Low emittance (68 nm at 6 GeV)

– Low emittance lattice has nonzero 

dispersion in the straight sections

 Run off-momentum

– Reduces horizontal and vertical emittance

– Original lattice meets storage ring injection 

requirements (εx=60 nm, εy=16 nm) if run 

far enough  off-momentum

– Increased energy spread may reduce 

collective instabilities at SR injection

 Recently upgraded BPM system to allow 

for orbit correction along the ramp

M. Borland

Low emittance lattice
Booster overview

Original lattice



Booster injection efficiency 
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 Main limiting factor to achieving high 

charge operation is reduced injection 

efficiency in the booster. 

 Goal is 17 nC (e.g. 85% efficiency for 20 

nC injected charge)

 Originally planned to use low emittance 

booster lattice for high charge operation

– Showed large losses in first few ms of ramp

– Significant shot-to-shot  variation

– Maximum booster charge ~5 nC

 Switched back to original lattice 

– After optimization of injection voltage, cavity 

detuning, and ramp parameters, shows 

much better injection efficiency

– Maximum charge in booster ~12 nC

– Still observe early losses at high charge

 We have investigated this issue using 

particle tracking simulations

Low emittance 

Original



Booster simulations
 Particle tracking done with ELEGANT [1]

– Track element-by-element

– 50,000 macroparticles

– Track 3000 turns (3.5 ms)

• Where most losses occur

 Model includes:

– Transverse and longitudinal impedance [2]

– Beam loading in RF cavities

 Simulation parameters:

– Transverse beam size measured on flag in PAR-to-booster transfer line

• Vertical beam size blowup caused by ions in the PAR [3]

– PAR bunch length measured photodiode detector (~350 ps at low charge)

– RMS energy mismatch between booster and injected beam

• Caused by variation in dipole ramp

• Estimated to be ±0.5% based on amplitude of synchrotron oscillations

– RMS transverse offsets 
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[1] M. Borland. ANL/APS LS-287, (2000).

Y. Wang et al. Proc. of PAC 2007, 3444–3446 (2007).

[2] R. R. Lindberg et al. Proc. IPAC 2015. TUPJE078.

[3] J. Calvey et al. THPOA14, Proc. NAPAC16.
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Booster impedance model

 Developed using same technique as 

storage ring model                           

(by R. Lindberg)

 Elements included:

– RF cavities (4)

– RF cavity bellows (10)

– Booster bellows (40)

– T‐vacuum port (37)

– X‐vacuum port (37)

– 4‐blade stripline (2)

– Flange gaps (120)

 Compare simulated and measured 

tune shift with charge

– Good agreement between model and 

measured data above 3 GeV

– Data is very noisy earlier in the ramp
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GdfidL1 Model of Booster Bellows
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[1] W. Bruns. The GdfidL

Electromagnetic Field simulator.



Simulation results

 Predicted efficiency is very good up to ~10 nC injected charge

 Predicted transmission begins to drop at higher charge

– Most losses occur in first ~500 turns

– Many particles lost on the horizontal aperture at high dispersion locations

 Beam loading is biggest contributor to simulated losses at high charge

 PAR bunch length blowup results in some particles not being captured in RF 

bucket

– Left plot shows efficiency with blowup, but no other collective effects

 Small (~3-5%) losses due to vertical beam size blowup in PAR
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Simulated injection efficiency

 Simulation matches measured injection efficiency for both lattices

 Maximum surviving charge in low emittance lattice is ~5 nC.  This lattice has 

non-zero dispersion in the straight sections, which causes two problems [1]:

– Closed orbit depends on energy offset (which varies shot-to-shot)

– Synchro-betatron coupling (due to dispersion in RF cavities)

 Original lattice injection efficiency is > 85% up to 10 nC

20

Booster Efficiency: original lattice
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[1] J. Calvey et al. WEA1CO03, Proc. NAPAC16.

Booster Efficiency: low emittance lattice



Beam loading

 The large shunt impedance of the booster cavities presents 

many challenges for beam-loading

 At 20 nC, beam loading voltage at resonance is 1.4 MV

– Desired injection voltage is 600 kV. 

 The beam-induced voltage builds up quickly since the 

cavity time constant is only 18 μsec (15 booster turns)
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Injection vs extraction

 Rf requirements are very different at injection and extraction

 Injection:

– Want to mitigate beam loading by detuning cavities

– Optimal detuning: -27 kHz

– Want to injection on-momentum to maximize injection efficiency

 Extraction:

– Want to be near resonance to minimize power requirements 

– Optimal detuning: -2 kHz

– Want to extract off-momentum (by at least -0.6%) to meet emittance 

requirements for injection into storage ring

 Plan to change momentum offset by changing frequency along ramp
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Preferred solution: dynamic tuning

23

 Inject on-momentum

– Moves beam away from horizontal 

aperture: improves transmission

 Detune cavities by 20 – 30 kHz at 

injection

– Reduces beam loading: further 

improves transmission

 Achieve injection efficiency goal with  

-20 kHz (or more) detuning

– Assumes PAR bunch length blowup is 

cured.  If not, maximum efficiency is ~85%

 Sweep cavity frequency along ramp 

to bring cavities near resonance at 

extraction

– Requires 50 kHz tuning range (20 kHz for 

frequency ramp + 30 kHz detuning)

– Dynamic tuner design (ferrite) is under 

development
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Full ramp simulations
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 Simulations using ILMATRIX

– Includes impedance, but not beam loading

– Includes frequency ramp

 No transverse instability is expected up to 

20 nC

 No growth in emittance or energy spread

 Meets emittance requirements for storage 

ring injection (εx=50nm, εy=16nm)
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Summary

 High charge operation of the APS injectors has presented 

many interesting challenges

 PAR:

– Biggest issue is bunch length blowup / instability

– Plan to investigate this with a combination of modeling and improved 

diagnostics

– Transverse blowup due to ions may have some effect on efficiency, 

mitigation options exist if necessary 

 Booster:

– Meet transverse emittance requirements by running off-momentum

– Injection efficiency issue has been studied with simulations 

– Beam loading looks to be the most important factor at very high 

charge

– Plan to mitigate this with dynamic tuning + frequency sweep, though 

other options are available
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Thanks for your attention!
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Backup slides
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Booster orbit corrected over cycle using new BPMs
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 Orbit corrected over the Booster cycle using new BPMs and corrector ramps. One 
(of ten) time slots shown.

 Rms orbit error is reduced significantly.

 Injection dynamics are improved with corrected orbit: 100% eff at low charge, and 
~1 nC higher charge limit (including PAR rf tuning).

 LOCO measurements and analysis are ongoing. The need for lattice correction will 
be evaluated; implementation would require shunts or small power supplies.
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Addresses #2908 

PDR 4-3.13.4



Booster-storage ring injection synchronization 

concept
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 Beam transfer happens when the Booster bunch coincides in time with the storage-
ring (SR) bucket to be filled and the energies match.

 The Booster rf follows a program that ensures this for a given SR bucket while 
moving the momentum of the beam in the desired way.
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 A (1-cos(πt/t1)) component to 
change momentum

 A (1-cos(2πt/t1)) component 
to adjust path length (phase).

 Each SR bucket gets its own 
Booster rf program

 Graph shows the shortest  
and longest path through   
the Booster

 No. of turns in Booster varies.
 Tuning of RF cavities needs to 

follow

d
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U. Wienands



Alternate scheme: comb filter
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 Sweep booster frequency, keep tuners fixed

– Detuning will go from ~+20 kHz to +2kHz

– Robinson unstable

 Comb filter modifies the cavity impedance, provides damping when cavity is 

tuned to  the “wrong” side for Robinson stability

 Other options, including direct RF feedback and feed-forward, are also under 

investigation

 So far, simulations point towards dynamic tuning as the best option
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T. Berenc



Other beam loading compensation options
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 Fixed frequency and fixed cavity detuning

– Can improve transmission through detuning, but this requires 

excessive RF power at extraction (200+ kW/cavity)

– Requires high power couplers: significant technical risk

 Direct RF feedback

– Reduces effective impedance seen by beam

– Also reduces Robinson damping

– Implementation complicated by differential delay between the 

injection side and extraction side cavities (which are driven by a 

single klystron on the extraction side)

 RF feed-forward to counteract transient beam loading

 Preliminary simulations indicate these options are inferior 

to heavy detuning, but more work is needed
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