

Challenges for High Charge Operation of the APS Injection System

Joe Calvey

Assistant Physicist Argonne National Laboratory

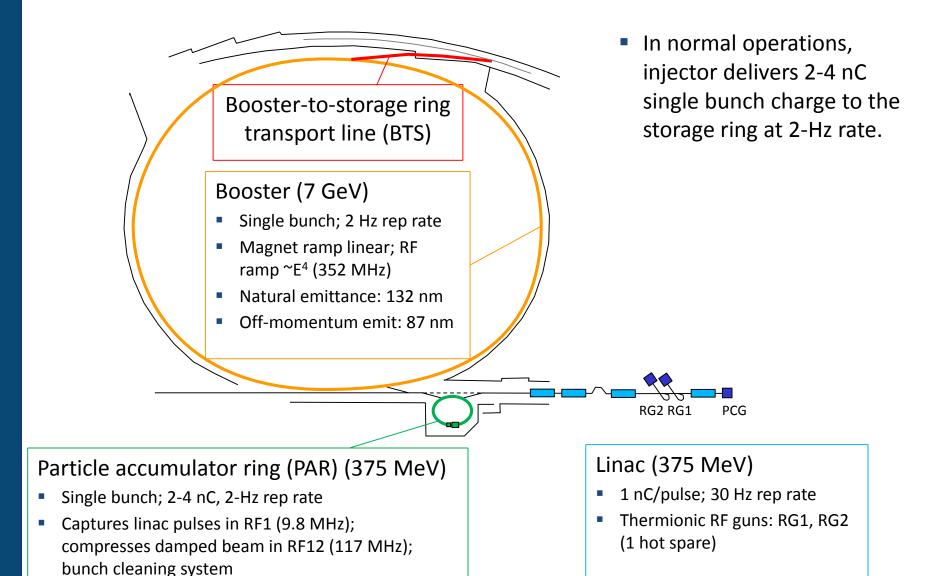
Topical Workshop on Injection and Injection Systems August 29, 2017

Injector working group

- K. Harkay PAR/Booster Machine Manager
- J. Calvey Deputy PAR/Booster Machine Manager
- C-Y. Yao- injector expert, semi-retired
- Physics team: M. Borland, J. Dooling, L. Emery, R. Lindberg,
 V. Sajaev, N. Sereno, Y.-e. Sun, Y.-P. Sun, A. Xiao, U. Wienands
- RF group: T. Berenc, D. Horan, A. Goel, G. Waldschmidt
- Engineering, Software, Controls, & Operations Team: A. Brill, J. Carter, H. Bui, R. Flood, G. Fystro, A. Hillman, L. Morrison, S. Pasky, A. Pietryla, T. Puttkammer, H. Shang, R. Soliday, J. Wang, F. Westferro, S. Xiang, S. Xu

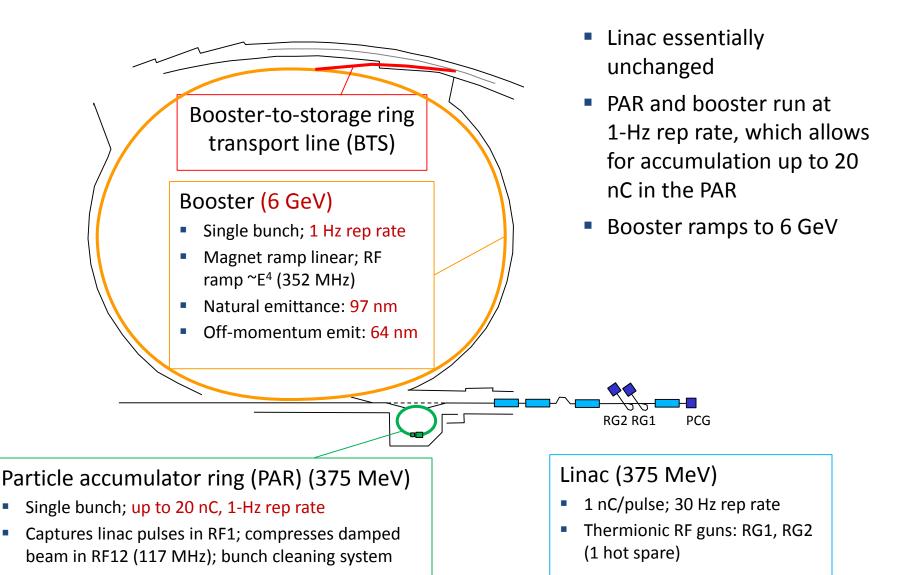
Outline

- Overview of APS injector complex
- High charge issues in the particle accumulator ring:
 - Bunch length blowup
 - Beam capture in 12th harmonic cavity
 - Longitudinal instability
 - Ion trapping
- High charge issues in the booster synchrotron:
 - Injection efficiency
 - Beam loading compensation
 - RF Frequency ramp

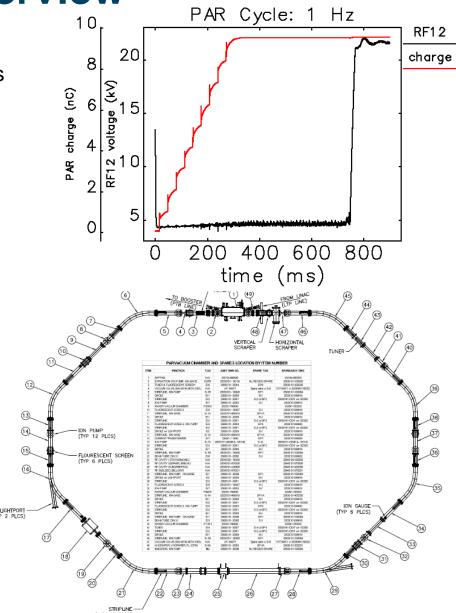


Introduction

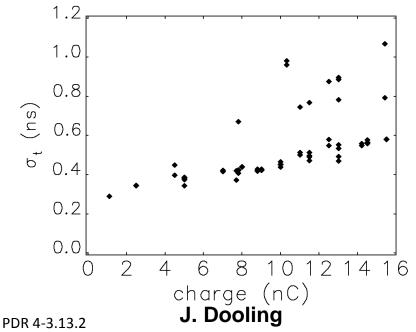
- APS injectors were originally designed to deliver up to 6 nC.
 - Typical operation: 2-3 nC
- R&D is underway to study the high-charge performance.
 The charge and beam quality are limited primarily by longitudinal effects.
- So far we have achieved 16 nC in PAR, 12 nC in booster
- The present injectors are capable of supporting 200 mA in a total of 72 to 324 bunches (i.e., 2.5 nC to 11 nC).
- Improvements to support 200 mA in 48 bunches (16 nC) are being developed.

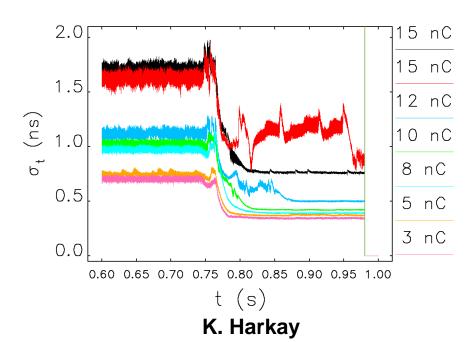


APS Injector Complex


APS Injectors: High Charge

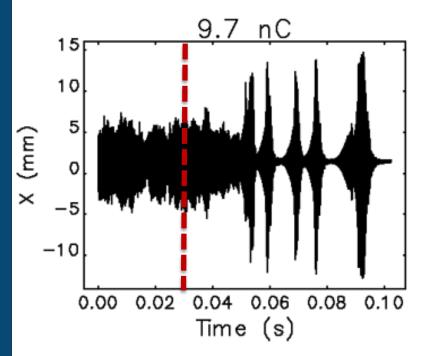
PAR overview

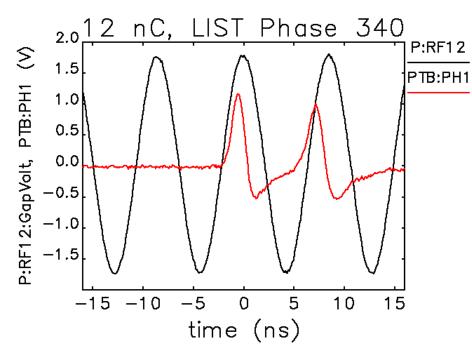

- Modeled after DESY's PIA ring
- 1 nC bunches from linac injected every 33 ms
- 1 Hz mode developed to allow accumulation for 750 ms
- At 750 ms, 12th harmonic cavity is turned on, shortening the bunch to ~350 ps (zero current)
- Highest charge achieved in PAR: ~16 nC
- Concerns for high charge operation:
 - Reduced injection efficiency at very high charge (> 16 nC injected)
 - Fundamental RF1 trips, believed caused by beam loading and HOMs presented to nonisolated amplifier
 - Significant bunch length blowup, accompanied by longitudinal instability.
 - Vertical beam size growth, likely due to ion trapping



PAR bunch length blowup

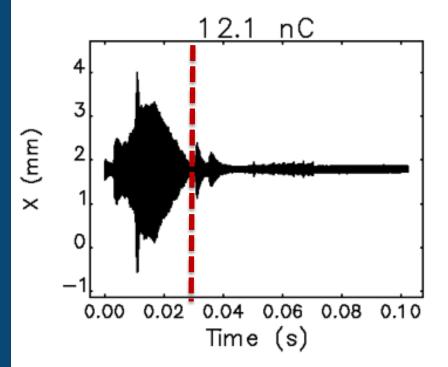
- Data were acquired with a photodiode signal, calibrated using a laser and streak camera.
- Plot on left shows average bunch length over 10 turns at 900 ms in cycle. There is a linear trend towards twice the bunch length (potential well distortion), as well as instances of extreme bunch length blowup due to an instability (Robinson-type or microwave).
- Plot on right shows bunch length before and after RF 12 capture (750 ms). Sawtooth instability can be seen at 10, 12, 15 nC.

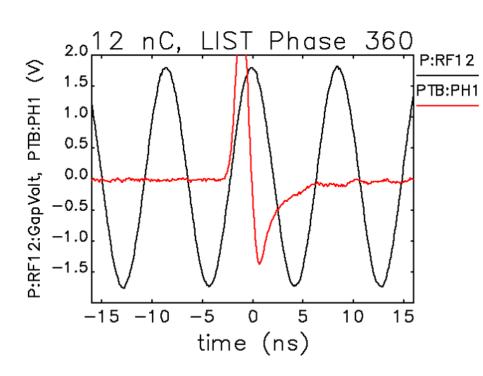




PAR harmonic tuning

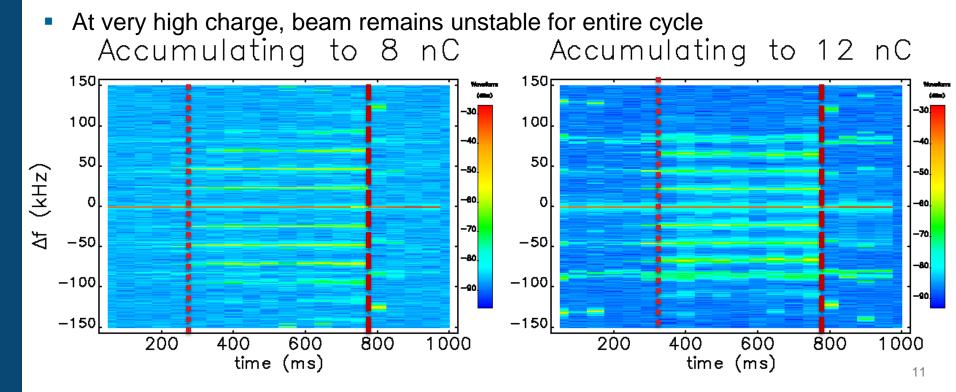
- 12th harmonic cavity detuning and phase must be carefully optimized for good capture at high charge
 - Bad choice of parameters leads to double bunching and/or instability
 - Left: sawtooth instability after RF12 turn-on (dashed line) measured by new turn-by-turn BPM (in a dispersive section)
 - Right: double-bunching in PAR-to-booster transfer line





PAR harmonic tuning

- 12th harmonic cavity detuning and phase must be carefully optimized for good capture at high charge
 - Both problems mitigated with good choice of tuning parameters

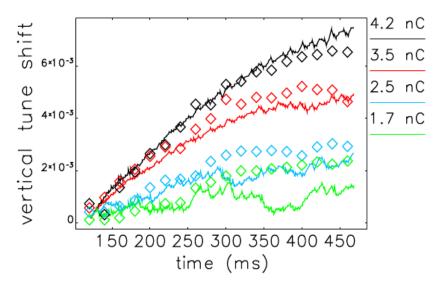


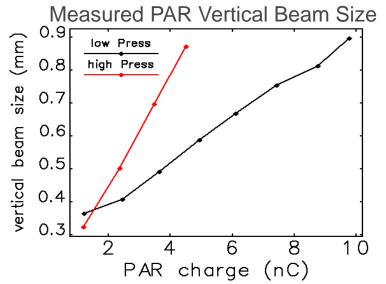
PAR longitudinal instability

- Beam is longitudinally unstable before 12th harmonic turn-on
 - Multiple synchrotron sidebands observed after accumulation (dotted line)
 - Bunch is long; instability is consistent with long-range, resonator impedance.
- With proper tuning of 12th harmonic detuning and phase, can stabilize beam after turn-on (dashed line)
- At higher charge, 12th harmonic synchrotron tune is visible after turn-on
 - Seems to persist until next turn, probably AGC loop is not fast enough.

Modeling of PAR beam loading

- Modeling of PAR beam loading is in early stages
- Beam loading in 12th harmonic cavity is significant, even when it's detuned
 - Simple calculation gives ~14 kV at 20 nC and -140 kHz
 - (compared to ~22 kV cavity voltage when RF12 enabled)
 - Preliminary simulations suggest that the cavity could be used passively at very high charge
- Things to model:
 - Beam loading in both cavities
 - Harmonic capture in the presence of beam loading
 - Cavity HOMs (measurements are underway)
 - Efficacy of cavity feedback loops at high charge
 - Develop PAR impedance model

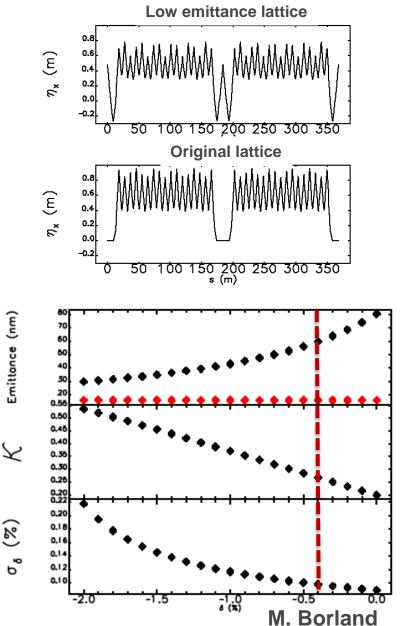



PAR ion effects

- Trapped ions cause a positive tune shift with charge, which increases along the PAR cycle. This effect has been reproduced with simulations [1,2]
- We haven't observed coherent ion instability, and don't anticipate it at high charge
- We believe ions are responsible for vertical beam size blowup with charge
 - Effect was stronger when pressure was high after a vacuum intervention
 - Plan to model this with IONEFFECTS element in ELEGANT

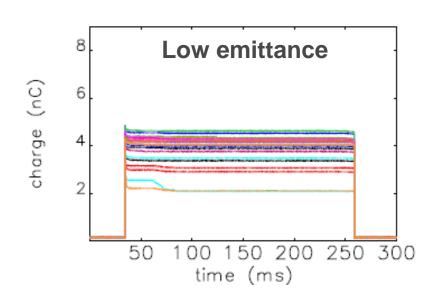
[1] L. Wang et al, PRST-AB 14, 084401 (2011).

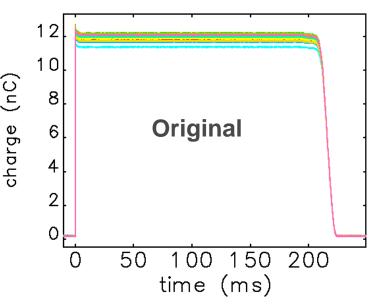
[2] J. Calvey et al. THPOA14, Proc. NAPAC16.


PAR plans

- Continue to study longitudinal blowup / instability with modeling, as well as improved diagnostics
 - Photodiode and streak camera
 - Detailed measurements of cavity HOMs
 - BPMs with turn-by-turn capability (2 so far)
 - Upgrade of RF diagnostics is underway
- Absorptive filter to cure fundamental RF trips (to be installed this fall)
- Mitigate vertical beam size blowup, if needed
 - Beyond vacuum conditioning, ion trapping could be mitigated further: e.g.,
 NEG coating, adding more pumps, or clearing electrodes.
- Test alternate modes of operation:
 - Operate RF12 in passive mode
 - Operate at higher beam energy

Booster overview


- Ramp from 375 MeV to 7 GeV in 225 ms
- Two lattices studied:
 - Original (97 nm natural emittance at 6 GeV)
 - Low emittance (68 nm at 6 GeV)
 - Low emittance lattice has nonzero dispersion in the straight sections
- Run off-momentum
 - Reduces horizontal and vertical emittance
 - Original lattice meets storage ring injection requirements (ε_x=60 nm, ε_y=16 nm) if run far enough off-momentum
 - Increased energy spread may reduce collective instabilities at SR injection
- Recently upgraded BPM system to allow for orbit correction along the ramp



Booster injection efficiency

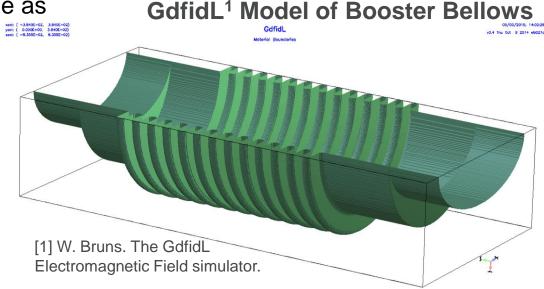
- Main limiting factor to achieving high charge operation is reduced injection efficiency in the booster.
- Goal is 17 nC (e.g. 85% efficiency for 20 nC injected charge)
- Originally planned to use low emittance booster lattice for high charge operation
 - Showed large losses in first few ms of ramp
 - Significant shot-to-shot variation
 - Maximum booster charge ~5 nC
- Switched back to original lattice
 - After optimization of injection voltage, cavity detuning, and ramp parameters, shows much better injection efficiency
 - Maximum charge in booster ~12 nC
 - Still observe early losses at high charge
- We have investigated this issue using particle tracking simulations

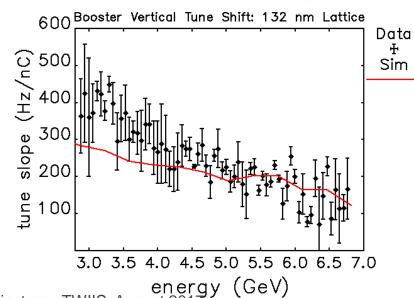
Booster simulations

- Particle tracking done with ELEGANT [1]
 - Track element-by-element
 - 50,000 macroparticles
 - Track 3000 turns (3.5 ms)
 - Where most losses occur

[1] M. Borland. ANL/APS LS-287, (2000).Y. Wang et al. *Proc. of PAC 2007*, 3444–3446 (2007).

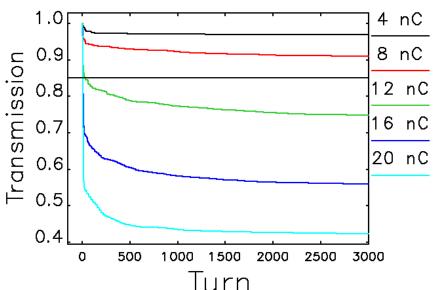
[2] R. R. Lindberg et al. Proc. IPAC 2015. TUPJE078.

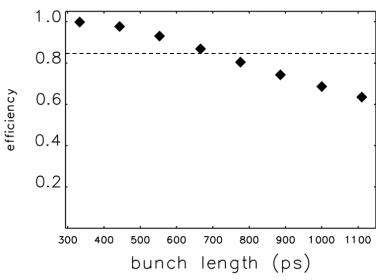

[3] J. Calvey et al. THPOA14, Proc. NAPAC16.


- Model includes:
 - Transverse and longitudinal impedance [2]
 - Beam loading in RF cavities
- Simulation parameters:
 - Transverse beam size measured on flag in PAR-to-booster transfer line
 - Vertical beam size blowup caused by ions in the PAR [3]
 - PAR bunch length measured photodiode detector (~350 ps at low charge)
 - RMS energy mismatch between booster and injected beam
 - Caused by variation in dipole ramp
 - Estimated to be ±0.5% based on amplitude of synchrotron oscillations
 - RMS transverse offsets

Booster impedance model

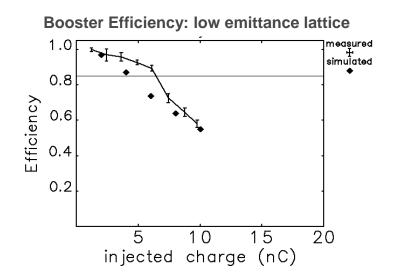
- Developed using same technique as storage ring model (by R. Lindberg)
- Elements included:
 - RF cavities (4)
 - RF cavity bellows (10)
 - Booster bellows (40)
 - T-vacuum port (37)
 - X-vacuum port (37)
 - 4-blade stripline (2)
 - Flange gaps (120)
- Compare simulated and measured tune shift with charge
 - Good agreement between model and measured data above 3 GeV
 - Data is very noisy earlier in the ramp

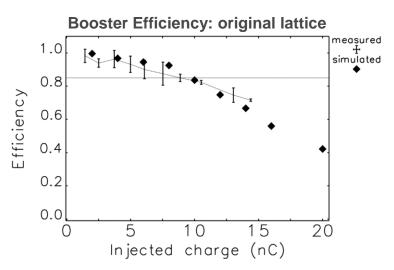




Simulation results

- Predicted efficiency is very good up to ~10 nC injected charge
- Predicted transmission begins to drop at higher charge
 - Most losses occur in first ~500 turns
 - Many particles lost on the horizontal aperture at high dispersion locations
- Beam loading is biggest contributor to simulated losses at high charge
- PAR bunch length blowup results in some particles not being captured in RF bucket
 - Left plot shows efficiency with blowup, but no other collective effects
- Small (~3-5%) losses due to vertical beam size blowup in PAR





Simulated injection efficiency

- Simulation matches measured injection efficiency for both lattices
- Maximum surviving charge in low emittance lattice is ~5 nC. This lattice has non-zero dispersion in the straight sections, which causes two problems [1]:
 - Closed orbit depends on energy offset (which varies shot-to-shot)
 - Synchro-betatron coupling (due to dispersion in RF cavities)
- Original lattice injection efficiency is > 85% up to 10 nC

[1] J. Calvey et al. WEA1CO03, Proc. NAPAC16.

Beam loading

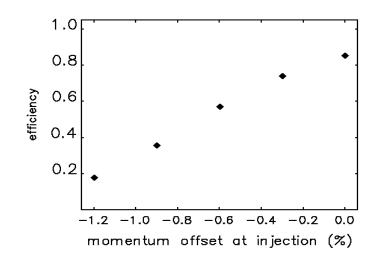
- The large shunt impedance of the booster cavities presents many challenges for beam-loading
- At 20 nC, beam loading voltage at resonance is 1.4 MV
 - Desired injection voltage is 600 kV.
- The beam-induced voltage builds up quickly since the cavity time constant is only 18 µsec (15 booster turns)

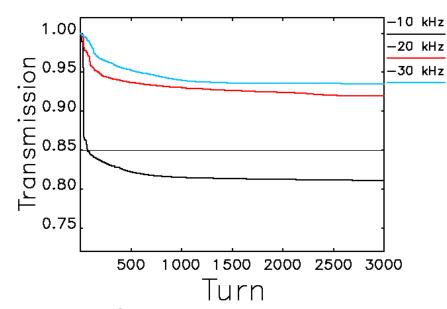
Booster has four 352-MHz, 5-cell LEP-style rf cavities.

Table 1: Nominal Booster cavity parameters

	Single Cavity	Total 4 Cav.
$(R/Q)_a$	$1400~\Omega$	$5600~\Omega$
Q_o	38,500	38,500
Present Q_L	\sim 20,000	$\sim 20,000$
Loaded R_a^*	$28~\mathrm{M}\Omega$	$112~\mathrm{M}\Omega$

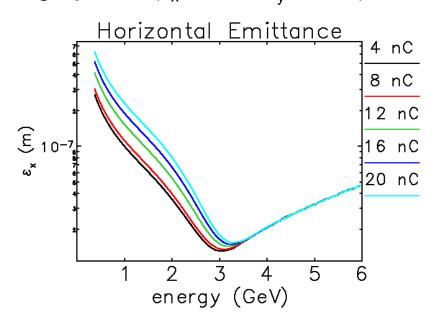
 $R_a \equiv V^2/P$

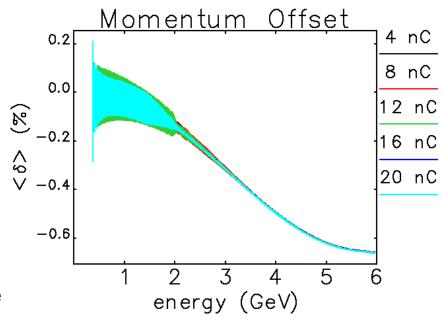

Injection vs extraction

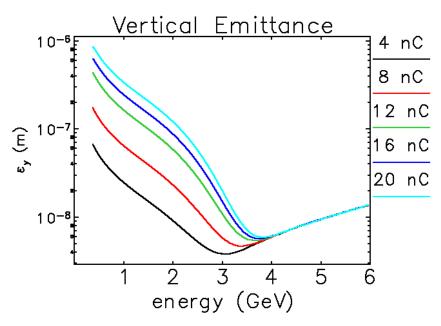

- Rf requirements are very different at injection and extraction
- Injection:
 - Want to mitigate beam loading by detuning cavities
 - Optimal detuning: -27 kHz
 - Want to injection on-momentum to maximize injection efficiency
- Extraction:
 - Want to be near resonance to minimize power requirements
 - Optimal detuning: -2 kHz
 - Want to extract off-momentum (by at least -0.6%) to meet emittance requirements for injection into storage ring
- Plan to change momentum offset by changing frequency along ramp

Preferred solution: dynamic tuning

- Inject on-momentum
 - Moves beam away from horizontal aperture: improves transmission
- Detune cavities by 20 30 kHz at injection
 - Reduces beam loading: further improves transmission
- Achieve injection efficiency goal with
 -20 kHz (or more) detuning
 - Assumes PAR bunch length blowup is cured. If not, maximum efficiency is ~85%
- Sweep cavity frequency along ramp to bring cavities near resonance at extraction
 - Requires 50 kHz tuning range (20 kHz for frequency ramp + 30 kHz detuning)
 - Dynamic tuner design (ferrite) is under development







Full ramp simulations

- Simulations using ILMATRIX
 - Includes impedance, but not beam loading
 - Includes frequency ramp
- No transverse instability is expected up to 20 nC
- No growth in emittance or energy spread
- Meets emittance requirements for storage ring injection (ϵ_x =50nm, ϵ_v =16nm)

Summary

 High charge operation of the APS injectors has presented many interesting challenges

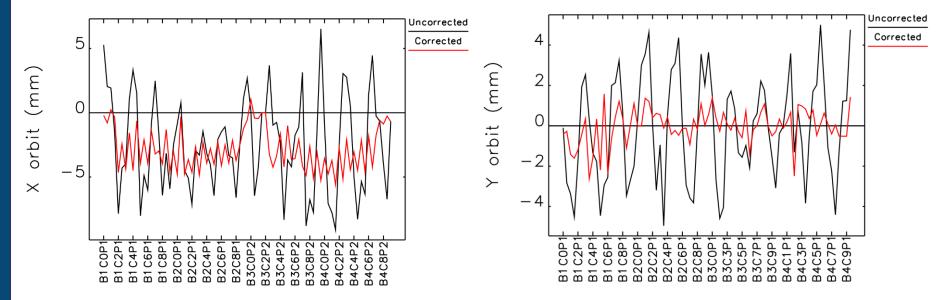
PAR:

- Biggest issue is bunch length blowup / instability
- Plan to investigate this with a combination of modeling and improved diagnostics
- Transverse blowup due to ions may have some effect on efficiency, mitigation options exist if necessary

Booster:

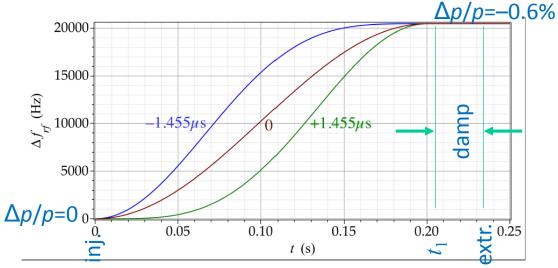
- Meet transverse emittance requirements by running off-momentum
- Injection efficiency issue has been studied with simulations
- Beam loading looks to be the most important factor at very high charge
- Plan to mitigate this with dynamic tuning + frequency sweep, though other options are available

Thanks for your attention!


Backup slides

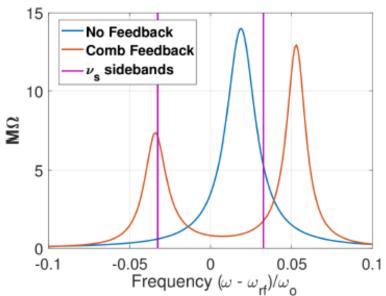
Booster orbit corrected over cycle using new BPMs

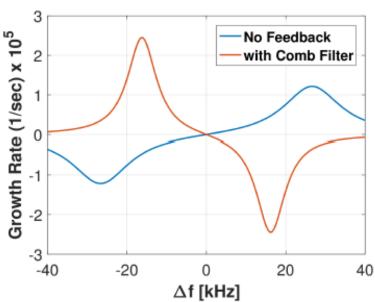
- Orbit corrected over the Booster cycle using new BPMs and corrector ramps. One (of ten) time slots shown.
- Rms orbit error is reduced significantly.
- Injection dynamics are improved with corrected orbit: 100% eff at low charge, and ~1 nC higher charge limit (including PAR rf tuning).
- LOCO measurements and analysis are ongoing. The need for lattice correction will be evaluated; implementation would require shunts or small power supplies.


Addresses #2908

Booster-storage ring injection synchronization concept

- Beam transfer happens when the Booster bunch coincides in time with the storagering (SR) bucket to be filled and the energies match.
- The Booster rf follows a program that ensures this for a given SR bucket while moving the momentum of the beam in the desired way.
- A $(1-\cos(\pi t/t_1))$ component to change momentum
- A $(1-\cos(2\pi t/t_1))$ component to adjust path length (phase).
- Each SR bucket gets its own Booster rf program
- Graph shows the shortest and longest path through the Booster
- No. of turns in Booster varies.
- Tuning of RF cavities needs to follow




U. Wienands

Alternate scheme: comb filter

- Sweep booster frequency, keep tuners fixed
 - Detuning will go from ~+20 kHz to +2kHz
 - Robinson unstable
- Comb filter modifies the cavity impedance, provides damping when cavity is tuned to the "wrong" side for Robinson stability
- Other options, including direct RF feedback and feed-forward, are also under investigation
- So far, simulations point towards dynamic tuning as the best option

Other beam loading compensation options

- Fixed frequency and fixed cavity detuning
 - Can improve transmission through detuning, but this requires excessive RF power at extraction (200+ kW/cavity)
 - Requires high power couplers: significant technical risk
- Direct RF feedback
 - Reduces effective impedance seen by beam
 - Also reduces Robinson damping
 - Implementation complicated by differential delay between the injection side and extraction side cavities (which are driven by a single klystron on the extraction side)
- RF feed-forward to counteract transient beam loading
- Preliminary simulations indicate these options are inferior to heavy detuning, but more work is needed

