

Welcome

and Accelerators & Accelerator Research @ HZB

Andreas Jankowiak
Head Institute for Accelerator Physics
Helmholtz-Zentrum Berlin

RULε (WP7) Topical Workshop Injection & Injections Systems 28.08.2017

Helmholtz-Zentrum Berlin

total staff about 1150 (400 scientists), 140 Mio€ annual budget Member of the Helmholtz- Association (Germanys 18 large scale research facilities)

BESSY II – 3rd generation light source (UV/XUV/Soft-X-Ray)

Construction 1992 – 1998, in user operation since 1999

Energy/current 1.7GeV / 300mA

Emittance 4/6 nm rad

Pulse length 15 ps (rms)

Circumference 240 m

Straight sections 16

Undulators / MPW+WLS 12 / 1+2

Beamlines 46

> 5000 h user operation, 3000 user visits / a

> 98% availibility

low- α operation, femto slicing

ps beams, CSR, THz, 100 fs, polarised x-rays

Timing Experiments well supported @ BESSY II

- ~2 weeks true SB (single bunch):
- \circ ~2 weeks low α , MB (multi bunch)
- Camshaft bunch (1 Bunch)
- fs-slicing (3 Bunches)

13.5 mA / Bunch, 27 ps

0.025 mA or 0.33mA/Bunch, 5 ps (non-bursting/bursting)

4 mA, 17 ps, purity $> 10^4$ (pump, probe)

4 mA / Bunch, 17 ps \rightarrow 100 fs light pulses,

10⁶ photons/s, 0.1%BW

Pseudo Single Bunch:

- MHz chopper, beamline PM4, within 180 ns dark gap
- \circ PPRE excited (1.25 MHz, 17 ps, and low- α 4 ps, 10⁷-10⁹ photons/s 0.1%BW)
- PPRE sliced (6 kHz,100 fs, same ARTOF setup)

BESSY VSR – variable pulse length storage ring upgrade

30 Mio€ investment, fully funded implementation phase 2017 – 2022

HZB Helmholtz
Zentrum Berlin
BESSY VSR

high voltage (20 MV/m) cw multi-cell SC cavities allow to increase the total voltage gradient by to orders of magnitude

→ ca. 1/10 bunch length @ constant momentum compaction

Combining two RF systems with different frequencies (1.5 GHz & 1.75 GHz) generates long and short buckets, which can be filled individually to generate optimized fill pattern.

One cryo-module with:

2 x 4 cell @ 1.5 GHz & 2 x 4 cell @ 1.75 GHz operating at 1.8 K LHe temperature active length: 1.50 m with 20 MV/m total gradient: 2π 50 MV×GHz (x 60 increase)

Installed voltage: 16 MV @ 1.5 GHz

14 MV @ 1.75 GHz

VSR – adding advanced timing capabilities to storage rings

- 300 mA average current
- camshaft single bunches (short and long) in gaps
- ion clearing provided through gaps

in low alpha mode 500 fs @ 0.04 mA / bunch

multi functional hybrid mode

ps short single bunch, high current single bunch, slicing bunches, high average brilliance, background of intense CSR/THz radiation

preserving BESSY II emittance and TopUp capabilities

(> 90% inj. efficiency on average, > 60% single shot)

BESSY-VSR – Main challenges

- verification of the scaling behaviour bunch-length versus current
- development and operation of high gradient superconducting cavities
 - 1.5 GHz and 1.75 GHz @ 20 MV/m gradient cw
 - \rightarrow 130W @ 1.8 K cooling plant
 - → particulate free (clean) vacuum around cavity straight, 10⁻¹⁰ mbar
- control of coupled bunch instabilities
 - induced by higher order modes of sc cavities
 - → proper HOM damping design of sc cavities
 - → sufficiently strong bunch by bunch feedback
- operation with large (transient) beam loading and in regime of possible Robinson instability
 lifetime reduction, phase shift over bunch train, losses
 - → careful set up and control of RF-parameters
 - → appropriate low-level RF-control
 - → control of vertical phase space
- top up operation: injection from booster in short VSR bunches, lifetime
 - bunch length in booster 42 ps, injection efficiency > 90%
 - → bunch "compression" in booster necessary

Metrology Light Source (MLS)

bERLinPro – Berlin Energy Recovery Linac Project

bERLinPro = Berlin Energy Recovery Linac Project

100 mA / low emittance technology demonstrator (covering key aspects of large scale ERL)

project started 2011, fully funded building ready 2017 first electrons 2018 recirculation 2019/2020

srf-gun

1.4 cell srf cavities

1.5-2.3 MeV, single solenoid,

Parameter
V
A (77 pC/bunch)
0.5 μm)
r smaller (100 fs)
lz

bERLinPro – building near to completion

GunLab – SRF photo electron gun test stand

1.4 cell SRF gun cavity, high QE photo cathode, up to 3.5 MeV, first beam just now

Thank you for joining us!

Enjoy the workshop, HZB, and Berlin